toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Naila Murray; Antonio Lopez edit   pdf
doi  openurl
  Title Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models Type Journal Article
  Year 2020 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 128 Issue Pages 1505–1536  
  Keywords Procedural generation; Human action recognition; Synthetic data; Physics  
  Abstract Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ SGC2019 Serial 3303  
Permanent link to this record
 

 
Author Akhil Gurram; Onay Urfalioglu; Ibrahim Halfaoui; Fahd Bouzaraa; Antonio Lopez edit  url
doi  openurl
  Title Semantic Monocular Depth Estimation Based on Artificial Intelligence Type Journal Article
  Year 2020 Publication IEEE Intelligent Transportation Systems Magazine Abbreviated Journal ITSM  
  Volume 13 Issue 4 Pages 99-103  
  Keywords  
  Abstract Depth estimation provides essential information to perform autonomous driving and driver assistance. A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation. In practice, this means that the depth data used for CNN training is complemented with images having pixel-wise semantic labels where the same raw training data is associated with both types of ground truth, i.e., depth and semantic labels. The main contribution of this paper is to show that this hard constraint can be circumvented, i.e., that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets. In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming state-of-the-art results on monocular depth estimation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ GUH2019 Serial 3306  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell; Luis A Alexandre; G. Arias edit   pdf
url  openurl
  Title Understanding trained CNNs by indexing neuron selectivity Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 136 Issue Pages 318-325  
  Keywords  
  Abstract The impressive performance of Convolutional Neural Networks (CNNs) when solving different vision problems is shadowed by their black-box nature and our consequent lack of understanding of the representations they build and how these representations are organized. To help understanding these issues, we propose to describe the activity of individual neurons by their Neuron Feature visualization and quantify their inherent selectivity with two specific properties. We explore selectivity indexes for: an image feature (color); and an image label (class membership). Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties. It helps to find color selective neurons, such as a red-mushroom neuron in layer Conv4 or class selective neurons such as dog-face neurons in layer Conv5 in VGG-M, and establishes a methodology to derive other selectivity properties. Indexing on neuron selectivity can statistically draw how features and classes are represented through layers in a moment when the size of trained nets is growing and automatic tools to index neurons can be helpful.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes CIC; 600.087; 600.140; 600.118 Approved no  
  Call Number Admin @ si @ RVL2019 Serial 3310  
Permanent link to this record
 

 
Author Hassan Ahmed Sial; Ramon Baldrich; Maria Vanrell edit   pdf
url  openurl
  Title Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects Type Journal Article
  Year 2020 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 37 Issue 1 Pages 1-15  
  Keywords  
  Abstract Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes CIC; 600.140; 600.12; 600.118 Approved no  
  Call Number Admin @ si @ SBV2019 Serial 3311  
Permanent link to this record
 

 
Author Wenlong Deng; Yongli Mou; Takahiro Kashiwa; Sergio Escalera; Kohei Nagai; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger edit  url
openurl 
  Title Vision based Pixel-level Bridge Structural Damage Detection Using a Link ASPP Network Type Journal Article
  Year 2020 Publication Automation in Construction Abbreviated Journal AC  
  Volume 110 Issue Pages 102973  
  Keywords Semantic image segmentation; Deep learning  
  Abstract Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface structural damage detection, such as delamination and rebar exposure. It is well known that the quality of a deep learning model is highly dependent on the quality of the training dataset. Bridge damage detection, our application domain, has the following main challenges: (i) labeling the damages requires knowledgeable civil engineering professionals, which makes it difficult to collect a large annotated dataset; (ii) the damage area could be very small, whereas the background area is large, which creates an unbalanced training environment; (iii) due to the difficulty to exactly determine the extension of the damage, there is often a variation among different labelers who perform pixel-wise labeling. In this paper, we propose a novel model for bridge structural damage detection to address the first two challenges. This paper follows the idea of an atrous spatial pyramid pooling (ASPP) module that is designed as a novel network for bridge damage detection. Further, we introduce the weight balanced Intersection over Union (IoU) loss function to achieve accurate segmentation on a highly unbalanced small dataset. The experimental results show that (i) the IoU loss function improves the overall performance of damage detection, as compared to cross entropy loss or focal loss, and (ii) the proposed model has a better ability to detect a minority class than other light segmentation networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ DMK2020 Serial 3314  
Permanent link to this record
 

 
Author Sergio Escalera; Ralf Herbrich edit  url
doi  isbn
openurl 
  Title The NeurIPS’18 Competition: From Machine Learning to Intelligent Conversations Type Book Whole
  Year 2020 Publication The Springer Series on Challenges in Machine Learning Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This volume presents the results of the Neural Information Processing Systems Competition track at the 2018 NeurIPS conference. The competition follows the same format as the 2017 competition track for NIPS. Out of 21 submitted proposals, eight competition proposals were selected, spanning the area of Robotics, Health, Computer Vision, Natural Language Processing, Systems and Physics. Competitions have become an integral part of advancing state-of-the-art in artificial intelligence (AI). They exhibit one important difference to benchmarks: Competitions test a system end-to-end rather than evaluating only a single component; they assess the practicability of an algorithmic solution in addition to assessing feasibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Sergio Escalera; Ralf Hebrick  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1328 ISBN 978-3-030-29134-1 Medium  
  Area Expedition Conference (up)  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ HeE2020 Serial 3328  
Permanent link to this record
 

 
Author Fei Yang; Yongmei Cheng; Joost Van de Weijer; Mikhail Mozerov edit  url
doi  openurl
  Title Improved Discrete Optical Flow Estimation With Triple Image Matching Cost Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 8 Issue Pages 17093 - 17102  
  Keywords  
  Abstract Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YCW2020 Serial 3345  
Permanent link to this record
 

 
Author Fei Yang; Luis Herranz; Joost Van de Weijer; Jose Antonio Iglesias; Antonio Lopez; Mikhail Mozerov edit   pdf
url  doi
openurl 
  Title Variable Rate Deep Image Compression with Modulated Autoencoder Type Journal Article
  Year 2020 Publication IEEE Signal Processing Letters Abbreviated Journal SPL  
  Volume 27 Issue Pages 331-335  
  Keywords  
  Abstract Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates. To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network. Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; ADAS; 600.141; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ YHW2020 Serial 3346  
Permanent link to this record
 

 
Author Beata Megyesi; Bernhard Esslinger; Alicia Fornes; Nils Kopal; Benedek Lang; George Lasry; Karl de Leeuw; Eva Pettersson; Arno Wacker; Michelle Waldispuhl edit  url
openurl 
  Title Decryption of historical manuscripts: the DECRYPT project Type Journal Article
  Year 2020 Publication Cryptologia Abbreviated Journal CRYPT  
  Volume 44 Issue 6 Pages 545-559  
  Keywords automatic decryption; cipher collection; historical cryptology; image transcription  
  Abstract Many historians and linguists are working individually and in an uncoordinated fashion on the identification and decryption of historical ciphers. This is a time-consuming process as they often work without access to automatic methods and processes that can accelerate the decipherment. At the same time, computer scientists and cryptologists are developing algorithms to decrypt various cipher types without having access to a large number of original ciphertexts. In this paper, we describe the DECRYPT project aiming at the creation of resources and tools for historical cryptology by bringing the expertise of various disciplines together for collecting data, exchanging methods for faster progress to transcribe, decrypt and contextualize historical encrypted manuscripts. We present our goals and work-in progress of a general approach for analyzing historical encrypted manuscripts using standardized methods and a new set of state-of-the-art tools. We release the data and tools as open-source hoping that all mentioned disciplines would benefit and contribute to the research infrastructure of historical cryptology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ MEF2020 Serial 3347  
Permanent link to this record
 

 
Author Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes edit   pdf
url  openurl
  Title Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition Type Journal Article
  Year 2020 Publication Neural Computing and Applications Abbreviated Journal NEUCOMA  
  Volume 32 Issue Pages 11579–11596  
  Keywords  
  Abstract Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG; 600.140; 600.121; 600.141 Approved no  
  Call Number Admin @ si @ DRL2020 Serial 3348  
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes edit  url
openurl 
  Title Hierarchical graphs for coarse-to-fine error tolerant matching Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 134 Issue Pages 116-124  
  Keywords Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval  
  Abstract During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG; 600.097; 601.302; 603.057; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ RLF2020 Serial 3349  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Joana Maria Pujadas-Mora edit  url
isbn  openurl
  Title Browsing of the Social Network of the Past: Information Extraction from Population Manuscript Images Type Book Chapter
  Year 2020 Publication Handwritten Historical Document Analysis, Recognition, and Retrieval – State of the Art and Future Trends Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Scientific Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-981-120-323-7 Medium  
  Area Expedition Conference (up)  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ FLP2020 Serial 3350  
Permanent link to this record
 

 
Author Estefania Talavera; Maria Leyva-Vallina; Md. Mostafa Kamal Sarker; Domenec Puig; Nicolai Petkov; Petia Radeva edit   pdf
url  openurl
  Title Hierarchical approach to classify food scenes in egocentric photo-streams Type Journal Article
  Year 2020 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal J-BHI  
  Volume 24 Issue 3 Pages 866 - 877  
  Keywords  
  Abstract Recent studies have shown that the environment where people eat can affect their nutritional behaviour. In this work, we provide automatic tools for a personalised analysis of a person's health habits by the examination of daily recorded egocentric photo-streams. Specifically, we propose a new automatic approach for the classification of food-related environments, that is able to classify up to 15 such scenes. In this way, people can monitor the context around their food intake in order to get an objective insight into their daily eating routine. We propose a model that classifies food-related scenes organized in a semantic hierarchy. Additionally, we present and make available a new egocentric dataset composed of more than 33000 images recorded by a wearable camera, over which our proposed model has been tested. Our approach obtains an accuracy and F-score of 56\% and 65\%, respectively, clearly outperforming the baseline methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ TLM2020 Serial 3380  
Permanent link to this record
 

 
Author Pau Rodriguez; Diego Velazquez; Guillem Cucurull; Josep M. Gonfaus; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez edit  url
doi  openurl
  Title Personality Trait Analysis in Social Networks Based on Weakly Supervised Learning of Shared Images Type Journal Article
  Year 2020 Publication Applied Sciences Abbreviated Journal APPLSCI  
  Volume 10 Issue 22 Pages 8170  
  Keywords sentiment analysis, personality trait analysis; weakly-supervised learning; visual classification; OCEAN model; social networks  
  Abstract Social networks have attracted the attention of psychologists, as the behavior of users can be used to assess personality traits, and to detect sentiments and critical mental situations such as depression or suicidal tendencies. Recently, the increasing amount of image uploads to social networks has shifted the focus from text to image-based personality assessment. However, obtaining the ground-truth requires giving personality questionnaires to the users, making the process very costly and slow, and hindering research on large populations. In this paper, we demonstrate that it is possible to predict which images are most associated with each personality trait of the OCEAN personality model, without requiring ground-truth personality labels. Namely, we present a weakly supervised framework which shows that the personality scores obtained using specific images textually associated with particular personality traits are highly correlated with scores obtained using standard text-based personality questionnaires. We trained an OCEAN trait model based on Convolutional Neural Networks (CNNs), learned from 120K pictures posted with specific textual hashtags, to infer whether the personality scores from the images uploaded by users are consistent with those scores obtained from text. In order to validate our claims, we performed a personality test on a heterogeneous group of 280 human subjects, showing that our model successfully predicts which kind of image will match a person with a given level of a trait. Looking at the results, we obtained evidence that personality is not only correlated with text, but with image content too. Interestingly, different visual patterns emerged from those images most liked by persons with a particular personality trait: for instance, pictures most associated with high conscientiousness usually contained healthy food, while low conscientiousness pictures contained injuries, guns, and alcohol. These findings could pave the way to complement text-based personality questionnaires with image-based questions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes ISE; 600.119 Approved no  
  Call Number Admin @ si @ RVC2020b Serial 3553  
Permanent link to this record
 

 
Author Yaxing Wang edit  isbn
openurl 
  Title Transferring and Learning Representations for Image Generation and Translation Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image generation is arguably one of the most attractive, compelling, and challenging tasks in computer vision. Among the methods which perform image generation, generative adversarial networks (GANs) play a key role. The most common image generation models based on GANs can be divided into two main approaches. The first one, called simply image generation takes random noise as an input and synthesizes an image which follows the same distribution as the images in the training set. The second class, which is called image-to-image translation, aims to map an image from a source domain to one that is indistinguishable from those in the target domain. Image-to-image translation methods can further be divided into paired and unpaired image-to-image translation based on whether they require paired data or not. In this thesis, we aim to address some challenges of both image generation and image-to-image generation.GANs highly rely upon having access to vast quantities of data, and fail to generate realistic images from random noise when applied to domains with few images. To address this problem, we aim to transfer knowledge from a model trained on a large dataset (source domain) to the one learned on limited data (target domain). We find that both GANs andconditional GANs can benefit from models trained on large datasets. Our experiments show that transferring the discriminator is more important than the generator. Using both the generator and discriminator results in the best performance. We found, however, that this method suffers from overfitting, since we update all parameters to adapt to the target data. We propose a novel architecture, which is tailored to address knowledge transfer to very small target domains. Our approach effectively exploreswhich part of the latent space is more related to the target domain. Additionally, the proposed method is able to transfer knowledge from multiple pretrained GANs. Although image-to-image translation has achieved outstanding performance, it still facesseveral problems. First, for translation between complex domains (such as translations between different modalities) image-to-image translation methods require paired data. We show that when only some of the pairwise translations have been seen (i.e. during training), we can infer the remaining unseen translations (where training pairs are not available). We propose a new approach where we align multiple encoders and decoders in such a way that the desired translation can be obtained by simply cascadingthe source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). Second, we address the issue of bias in image-to-image translation. Biased datasets unavoidably contain undesired changes, which are dueto the fact that the target dataset has a particular underlying visual distribution. We use carefully designed semantic constraints to reduce the effects of the bias. The semantic constraint aims to enforce the preservation of desired image properties. Finally, current approaches fail to generate diverse outputs or perform scalable image transfer in a single model. To alleviate this problem, we propose a scalable and diverse image-to-image translation. We employ random noise to control the diversity. The scalabitlity is determined by conditioning the domain label.computer vision, deep learning, imitation learning, adversarial generative networks, image generation, image-to-image translation.  
  Address January 2020  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Abel Gonzalez;Luis Herranz  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-5-7 Medium  
  Area Expedition Conference (up)  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ Wan2020 Serial 3397  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: