|   | 
Details
   web
Records
Author Ivo Everts; Jan van Gemert; Theo Gevers
Title Evaluation of Color STIPs for Human Action Recognition Type Conference Article
Year 2013 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2850-2857
Keywords
Abstract This paper is concerned with recognizing realistic human actions in videos based on spatio-temporal interest points (STIPs). Existing STIP-based action recognition approaches operate on intensity representations of the image data. Because of this, these approaches are sensitive to disturbing photometric phenomena such as highlights and shadows. Moreover, valuable information is neglected by discarding chromaticity from the photometric representation. These issues are addressed by Color STIPs. Color STIPs are multi-channel reformulations of existing intensity-based STIP detectors and descriptors, for which we consider a number of chromatic representations derived from the opponent color space. This enhanced modeling of appearance improves the quality of subsequent STIP detection and description. Color STIPs are shown to substantially outperform their intensity-based counterparts on the challenging UCF~sports, UCF11 and UCF50 action recognition benchmarks. Moreover, the results show that color STIPs are currently the single best low-level feature choice for STIP-based approaches to human action recognition.
Address Portland; oregon; June 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN Medium
Area Expedition Conference (up) CVPR
Notes ALTRES;ISE Approved no
Call Number Admin @ si @ EGG2013 Serial 2364
Permanent link to this record
 

 
Author Naila Murray; Maria Vanrell; Xavier Otazu; C. Alejandro Parraga
Title Saliency Estimation Using a Non-Parametric Low-Level Vision Model Type Conference Article
Year 2011 Publication IEEE conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 433-440
Keywords Gaussian mixture model;ad hoc parameter selection;center-surround inhibition windows;center-surround mechanism;color appearance model;convolution;eye-fixation data;human vision;innate spatial pooling mechanism;inverse wavelet transform;low-level visual front-end;nonparametric low-level vision model;saliency estimation;saliency map;scale integration;scale-weighted center-surround response;scale-weighting function;visual task;Gaussian processes;biology;biology computing;colour vision;computer vision;visual perception;wavelet transforms
Abstract Many successful models for predicting attention in a scene involve three main steps: convolution with a set of filters, a center-surround mechanism and spatial pooling to construct a saliency map. However, integrating spatial information and justifying the choice of various parameter values remain open problems. In this paper we show that an efficient model of color appearance in human vision, which contains a principled selection of parameters as well as an innate spatial pooling mechanism, can be generalized to obtain a saliency model that outperforms state-of-the-art models. Scale integration is achieved by an inverse wavelet transform over the set of scale-weighted center-surround responses. The scale-weighting function (termed ECSF) has been optimized to better replicate psychophysical data on color appearance, and the appropriate sizes of the center-surround inhibition windows have been determined by training a Gaussian Mixture Model on eye-fixation data, thus avoiding ad-hoc parameter selection. Additionally, we conclude that the extension of a color appearance model to saliency estimation adds to the evidence for a common low-level visual front-end for different visual tasks.
Address Colorado Springs
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4577-0394-2 Medium
Area Expedition Conference (up) CVPR
Notes CIC Approved no
Call Number Admin @ si @ MVO2011 Serial 1757
Permanent link to this record
 

 
Author Marco Pedersoli; Andrea Vedaldi; Jordi Gonzalez
Title A Coarse-to-fine Approach for fast Deformable Object Detection Type Conference Article
Year 2011 Publication IEEE conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 1353-1360
Keywords
Abstract
Address Colorado Springs; USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) CVPR
Notes ISE Approved no
Call Number Admin @ si @ PVG2011 Serial 1764
Permanent link to this record
 

 
Author Miguel Oliveira; Angel Sappa; V.Santos
Title Unsupervised Local Color Correction for Coarsely Registered Images Type Conference Article
Year 2011 Publication IEEE conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 201-208
Keywords
Abstract The current paper proposes a new parametric local color correction technique. Initially, several color transfer functions are computed from the output of the mean shift color segmentation algorithm. Secondly, color influence maps are calculated. Finally, the contribution of every color transfer function is merged using the weights from the color influence maps. The proposed approach is compared with both global and local color correction approaches. Results show that our method outperforms the technique ranked first in a recent performance evaluation on this topic. Moreover, the proposed approach is computed in about one tenth of the time.
Address Colorado Springs
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4577-0394-2 Medium
Area Expedition Conference (up) CVPR
Notes ADAS Approved no
Call Number Admin @ si @ OSS2011; ADAS @ adas @ Serial 1766
Permanent link to this record
 

 
Author Albert Gordo; Florent Perronnin
Title Asymmetric Distances for Binary Embeddings Type Conference Article
Year 2011 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 729 - 736
Keywords
Abstract In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive Binary Codes (LSBC), Spectral Hashing (SH) and Semi-Supervised Hashing (SSH). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques. We also propose a novel simple binary embedding technique – PCA Embedding (PCAE) – which is shown to yield competitive results with respect to more complex algorithms such as SH and SSH.
Address Providence, RI
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4577-0394-2 Medium
Area Expedition Conference (up) CVPR
Notes DAG Approved no
Call Number Admin @ si @ GoP2011; IAM @ iam @ GoP2011 Serial 1817
Permanent link to this record
 

 
Author Rahat Khan; Joost Van de Weijer; Fahad Shahbaz Khan; Damien Muselet; christophe Ducottet; Cecile Barat
Title Discriminative Color Descriptors Type Conference Article
Year 2013 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2866 - 2873
Keywords
Abstract Color description is a challenging task because of large variations in RGB values which occur due to scene accidental events, such as shadows, shading, specularities, illuminant color changes, and changes in viewing geometry. Traditionally, this challenge has been addressed by capturing the variations in physics-based models, and deriving invariants for the undesired variations. The drawback of this approach is that sets of distinguishable colors in the original color space are mapped to the same value in the photometric invariant space. This results in a drop of discriminative power of the color description. In this paper we take an information theoretic approach to color description. We cluster color values together based on their discriminative power in a classification problem. The clustering has the explicit objective to minimize the drop of mutual information of the final representation. We show that such a color description automatically learns a certain degree of photometric invariance. We also show that a universal color representation, which is based on other data sets than the one at hand, can obtain competing performance. Experiments show that the proposed descriptor outperforms existing photometric invariants. Furthermore, we show that combined with shape description these color descriptors obtain excellent results on four challenging datasets, namely, PASCAL VOC 2007, Flowers-102, Stanford dogs-120 and Birds-200.
Address Portland; Oregon; June 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN Medium
Area Expedition Conference (up) CVPR
Notes CIC; 600.048 Approved no
Call Number Admin @ si @ KWK2013a Serial 2262
Permanent link to this record
 

 
Author Sounak Dey; Pau Riba; Anjan Dutta; Josep Llados; Yi-Zhe Song
Title Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval Type Conference Article
Year 2019 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2179-2188
Keywords
Abstract In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research.
Address Long beach; CA; USA; June 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) CVPR
Notes DAG; 600.140; 600.121; 600.097 Approved no
Call Number Admin @ si @ DRD2019 Serial 3462
Permanent link to this record