toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jon Almazan edit  openurl
  Title Learning to Represent Handwritten Shapes and Words for Matching and Recognition Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Writing is one of the most important forms of communication and for centuries, handwriting had been the most reliable way to preserve knowledge. However, despite the recent development of printing houses and electronic devices, handwriting is still broadly used for taking notes, doing annotations, or sketching ideas.
Transferring the ability of understanding handwritten text or recognizing handwritten shapes to computers has been the goal of many researches due to its huge importance for many different fields. However, designing good representations to deal with handwritten shapes, e.g. symbols or words, is a very challenging problem due to the large variability of these kinds of shapes. One of the consequences of working with handwritten shapes is that we need representations to be robust, i.e., able to adapt to large intra-class variability. We need representations to be discriminative, i.e., able to learn what are the differences between classes. And, we need representations to be efficient, i.e., able to be rapidly computed and compared. Unfortunately, current techniques of handwritten shape representation for matching and recognition do not fulfill some or all of these requirements.
Through this thesis we focus on the problem of learning to represent handwritten shapes aimed at retrieval and recognition tasks. Concretely, on the first part of the thesis, we focus on the general problem of representing any kind of handwritten shape. We first present a novel shape descriptor based on a deformable grid that deals with large deformations by adapting to the shape and where the cells of the grid can be used to extract different features. Then, we propose to use this descriptor to learn statistical models, based on the Active Appearance Model, that jointly learns the variability in structure and texture of a given class. Then, on the second part, we focus on a concrete application, the problem of representing handwritten words, for the tasks of word spotting, where the goal is to find all instances of a query word in a dataset of images, and recognition. First, we address the segmentation-free problem and propose an unsupervised, sliding-window-based approach that achieves state-of- the-art results in two public datasets. Second, we address the more challenging multi-writer problem, where the variability in words exponentially increases. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace, and where those that represent the same word are close together. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. This leads to a low-dimensional, unified representation of word images and strings, resulting in a method that allows one to perform either image and text searches, as well as image transcription, in a unified framework. We evaluate our methods on different public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number (down) Admin @ si @ Alm2014 Serial 2572  
Permanent link to this record
 

 
Author Jon Almazan edit  openurl
  Title Deforming the Blurred Shape Model for Shape Description and Recognition Type Report
  Year 2010 Publication CVC Technical Report Abbreviated Journal  
  Volume 163 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (down) Admin @ si @ Alm2010 Serial 1354  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Felipe Lumbreras; Antonio Lopez; Theo Gevers edit  openurl
  Title Understanding Road Scenes using Visual Cues Type Miscellaneous
  Year 2012 Publication European Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract DEMO  
  Address Florence; Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number (down) Admin @ si @ ALL2012 Serial 2795  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez edit  doi
isbn  openurl
  Title Photometric Invariance by Machine Learning Type Book Chapter
  Year 2012 Publication Color in Computer Vision: Fundamentals and Applications Abbreviated Journal  
  Volume 7 Issue Pages 113-134  
  Keywords road detection  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher iConcept Press Ltd Place of Publication Editor Theo Gevers, Arjan Gijsenij, Joost van de Weijer, Jan-Mark Geusebroek  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-470-89084-4 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (down) Admin @ si @ AlL2012 Serial 2186  
Permanent link to this record
 

 
Author Murad Al Haj edit  openurl
  Title Face Detection in Color Images Using Primitive Shape Features Type Report
  Year 2008 Publication CVC Technical Report #118 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Bellaterra (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number (down) Admin @ si @ AlH2008 Serial 945  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras edit   pdf
doi  openurl
  Title Combining Priors, Appearance and Context for Road Detection Type Journal Article
  Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 3 Pages 1168-1178  
  Keywords Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout  
  Abstract Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076;ISE Approved no  
  Call Number (down) Admin @ si @ ALG2014 Serial 2501  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Y. LeCun; Theo Gevers; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Semantic Road Segmentation via Multi-Scale Ensembles of Learned Features Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue Pages 586-595  
  Keywords road detection  
  Abstract Semantic segmentation refers to the process of assigning an object label (e.g., building, road, sidewalk, car, pedestrian) to every pixel in an image. Common approaches formulate the task as a random field labeling problem modeling the interactions between labels by combining local and contextual features such as color, depth, edges, SIFT or HoG. These models are trained to maximize the likelihood of the correct classification given a training set. However, these approaches rely on hand–designed features (e.g., texture, SIFT or HoG) and a higher computational time required in the inference process.
Therefore, in this paper, we focus on estimating the unary potentials of a conditional random field via ensembles of learned features. We propose an algorithm based on convolutional neural networks to learn local features from training data at different scales and resolutions. Then, diversification between these features is exploited using a weighted linear combination. Experiments on a publicly available database show the effectiveness of the proposed method to perform semantic road scene segmentation in still images. The algorithm outperforms appearance based methods and its performance is similar compared to state–of–the–art methods using other sources of information such as depth, motion or stereo.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes ADAS;ISE Approved no  
  Call Number (down) Admin @ si @ ALG2012; ADAS @ adas Serial 2187  
Permanent link to this record
 

 
Author David Aldavert edit  isbn
openurl 
  Title Efficient and Scalable Handwritten Word Spotting on Historical Documents using Bag of Visual Words Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Word spotting can be defined as the pattern recognition tasked aimed at locating and retrieving a specific keyword within a document image collection without explicitly transcribing the whole corpus. Its use is particularly interesting when applied in scenarios where Optical Character Recognition performs poorly or can not be used at all. This thesis focuses on such a scenario, word spotting on historical handwritten documents that have been written by a single author or by multiple authors with a similar calligraphy.
This problem requires a visual signature that is robust to image artifacts, flexible to accommodate script variations and efficient to retrieve information in a rapid manner. For this, we have developed a set of word spotting methods that on their foundation use the well known Bag-of-Visual-Words (BoVW) representation. This representation has gained popularity among the document image analysis community to characterize handwritten words
in an unsupervised manner. However, most approaches on this field rely on a basic BoVW configuration and disregard complex encoding and spatial representations. We determine which BoVW configurations provide the best performance boost to a spotting system.
Then, we extend the segmentation-based word spotting, where word candidates are given a priori, to segmentation-free spotting. The proposed approach seeds the document images with overlapping word location candidates and characterizes them with a BoVW signature. Retrieval is achieved comparing the query and candidate signatures and returning the locations that provide a higher consensus. This is a simple but powerful approach that requires a more compact signature than in a segmentation-based scenario. We first
project the BoVW signature into a reduced semantic topics space and then compress it further using Product Quantizers. The resulting signature only requires a few dozen bytes, allowing us to index thousands of pages on a common desktop computer. The final system still yields a performance comparable to the state-of-the-art despite all the information loss during the compression phases.
Afterwards, we also study how to combine different modalities of information in order to create a query-by-X spotting system where, words are indexed using an information modality and queries are retrieved using another. We consider three different information modalities: visual, textual and audio. Our proposal is to create a latent feature space where features which are semantically related are projected onto the same topics. Creating thus a new feature space where information from different modalities can be compared. Later, we consider the codebook generation and descriptor encoding problem. The codebooks used to encode the BoVW signatures are usually created using an unsupervised clustering algorithm and, they require to test multiple parameters to determine which configuration is best for a certain document collection. We propose a semantic clustering algorithm which allows to estimate the best parameter from data. Since gather annotated data is costly, we use synthetically generated word images. The resulting codebook is database agnostic, i. e. a codebook that yields a good performance on document collections that use the same script. We also propose the use of an additional codebook to approximate descriptors and reduce the descriptor encoding
complexity to sub-linear.
Finally, we focus on the problem of signatures dimensionality. We propose a new symbol probability signature where each bin represents the probability that a certain symbol is present a certain location of the word image. This signature is extremely compact and combined with compression techniques can represent word images with just a few bytes per signature.
 
  Address April 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Marçal Rusiñol;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-5-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number (down) Admin @ si @ Ald2021 Serial 3601  
Permanent link to this record
 

 
Author David Aldavert edit  openurl
  Title Visual Simultaneous Localization and Mapping Type Report
  Year 2006 Publication CVC Technical Report #98 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address CVC (UAB)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (down) Admin @ si @ Ald2006 Serial 736  
Permanent link to this record
 

 
Author David Alcalde edit  openurl
  Title Image classification in terms of rotation-invariant pattern matching Type Report
  Year 2003 Publication CVC Technical Report #73 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address CVC (UAB)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (down) Admin @ si @ Alc2003 Serial 518  
Permanent link to this record
 

 
Author Marina Alberti edit  openurl
  Title Detection and Alignment of Vascular Structures in Intravascular Ultrasound using Pattern Recognition Techniques Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this thesis, several methods for the automatic analysis of Intravascular Ultrasound
(IVUS) sequences are presented, aimed at assisting physicians in the diagnosis, the assessment of the intervention and the monitoring of the patients with coronary disease.
The basis for the developed frameworks are machine learning, pattern recognition and
image processing techniques.
First, a novel approach for the automatic detection of vascular bifurcations in
IVUS is presented. The task is addressed as a binary classication problem (identifying bifurcation and non-bifurcation angular sectors in the sequence images). The
multiscale stacked sequential learning algorithm is applied, to take into account the
spatial and temporal context in IVUS sequences, and the results are rened using
a-priori information about branching dimensions and geometry. The achieved performance is comparable to intra- and inter-observer variability.
Then, we propose a novel method for the automatic non-rigid alignment of IVUS
sequences of the same patient, acquired at dierent moments (before and after percutaneous coronary intervention, or at baseline and follow-up examinations). The
method is based on the description of the morphological content of the vessel, obtained by extracting temporal morphological proles from the IVUS acquisitions, by
means of methods for segmentation, characterization and detection in IVUS. A technique for non-rigid sequence alignment – the Dynamic Time Warping algorithm -
is applied to the proles and adapted to the specic clinical problem. Two dierent robust strategies are proposed to address the partial overlapping between frames
of corresponding sequences, and a regularization term is introduced to compensate
for possible errors in the prole extraction. The benets of the proposed strategy
are demonstrated by extensive validation on synthetic and in-vivo data. The results
show the interest of the proposed non-linear alignment and the clinical value of the
method.
Finally, a novel automatic approach for the extraction of the luminal border in
IVUS images is presented. The method applies the multiscale stacked sequential
learning algorithm and extends it to 2-D+T, in a rst classication phase (the identi-
cation of lumen and non-lumen regions of the images), while an active contour model
is used in a second phase, to identify the lumen contour. The method is extended
to the longitudinal dimension of the sequences and it is validated on a challenging
data-set.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Simone Balocco;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number (down) Admin @ si @ Alb2013 Serial 2215  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
url  openurl
  Title Feedback and Surround Modulated Boundary Detection Type Journal Article
  Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 126 Issue 12 Pages 1367–1380  
  Keywords Boundary detection; Surround modulation; Biologically-inspired vision  
  Abstract Edges are key components of any visual scene to the extent that we can recognise objects merely by their silhouettes. The human visual system captures edge information through neurons in the visual cortex that are sensitive to both intensity discontinuities and particular orientations. The “classical approach” assumes that these cells are only responsive to the stimulus present within their receptive fields, however, recent studies demonstrate that surrounding regions and inter-areal feedback connections influence their responses significantly. In this work we propose a biologically-inspired edge detection model in which orientation selective neurons are represented through the first derivative of a Gaussian function resembling double-opponent cells in the primary visual cortex (V1). In our model we account for four kinds of receptive field surround, i.e. full, far, iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output signal from V1 is pooled in its perpendicular direction by larger V2 neurons employing a contrast-variant centre-surround kernel. We further introduce a feedback connection from higher-level visual areas to the lower ones. The results of our model on three benchmark datasets show a big improvement compared to the current non-learning and biologically-inspired state-of-the-art algorithms while being competitive to the learning-based methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068; 600.072 Approved no  
  Call Number (down) Admin @ si @ AkP2018b Serial 2991  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
doi  openurl
  Title Colour Constancy Beyond the Classical Receptive Field Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 40 Issue 9 Pages 2081 - 2094  
  Keywords  
  Abstract The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results might provide an insight on how dynamical adaptation mechanisms contribute to make object's colours appear constant to us.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068; 600.072 Approved no  
  Call Number (down) Admin @ si @ AkP2018a Serial 2990  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit  openurl
  Title Dynamically Adjusted Surround Contrast Enhances Boundary Detection, European Conference on Visual Perception Type Conference Article
  Year 2016 Publication European Conference on Visual Perception Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; Spain; August 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECVP  
  Notes NEUROBIT Approved no  
  Call Number (down) Admin @ si @ AkP2016b Serial 2900  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
openurl 
  Title Biologically plausible boundary detection Type Conference Article
  Year 2016 Publication 27th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Edges are key components of any visual scene to the extent that we can recognise objects merely by their silhouettes. The human visual system captures edge information through neurons in the visual cortex that are sensitive to both intensity discontinuities and particular orientations. The “classical approach” assumes that these cells are only responsive to the stimulus present within their receptive fields, however, recent studies demonstrate that surrounding regions and inter-areal feedback connections influence their responses significantly. In this work we propose a biologically-inspired edge detection model in which orientation selective neurons are represented through the first derivative of a Gaussian function resembling double-opponent cells in the primary visual cortex (V1). In our model we account for four kinds of surround, i.e. full, far, iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output signal from V1 is pooled in its perpendicular direction by larger V2 neurons employing a contrast-variant centre-surround kernel. We further introduce a feedback connection from higher-level visual areas to the lower ones. The results of our model on two benchmark datasets show a big improvement compared to the current non-learning and biologically-inspired state-of-the-art algorithms while being competitive to the learning-based methods.  
  Address York; UK; September 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes NEUROBIT; 600.068; 600.072 Approved no  
  Call Number (down) Admin @ si @ AkP2016a Serial 2867  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: