Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer, & Jorma Laaksonen. (2017). Tex-Nets: Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition. In 19th International Conference on Multimodal Interaction.
Abstract: Recognizing materials and textures in realistic imaging conditions is a challenging computer vision problem. For many years, local features based orderless representations were a dominant approach for texture recognition. Recently deep local features, extracted from the intermediate layers of a Convolutional Neural Network (CNN), are used as filter banks. These dense local descriptors from a deep model, when encoded with Fisher Vectors, have shown to provide excellent results for texture recognition. The CNN models, employed in such approaches, take RGB patches as input and train on a large amount of labeled images. We show that CNN models, which we call TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard deep models trained on RGB patches. We further investigate two deep architectures, namely early and late fusion, to combine the texture and color information. Experiments on benchmark texture datasets clearly demonstrate that TEX-Nets provide complementary information to standard RGB deep network. Our approach provides a large gain of 4.8%, 3.5%, 2.6% and 4.1% respectively in accuracy on the DTD, KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets, compared to the standard RGB network of the same architecture. Further, our final combination leads to consistent improvements over the state-of-the-art on all four datasets.
Keywords: Convolutional Neural Networks; Texture Recognition; Local Binary Paterns
|
|
Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer, & Jorma Laaksonen. (2017). Top-Down Deep Appearance Attention for Action Recognition. In 20th Scandinavian Conference on Image Analysis (Vol. 10269, pp. 297–309). LNCS.
Abstract: Recognizing human actions in videos is a challenging problem in computer vision. Recently, convolutional neural network based deep features have shown promising results for action recognition. In this paper, we investigate the problem of fusing deep appearance and motion cues for action recognition. We propose a video representation which combines deep appearance and motion based local convolutional features within the bag-of-deep-features framework. Firstly, dense deep appearance and motion based local convolutional features are extracted from spatial (RGB) and temporal (flow) networks, respectively. Both visual cues are processed in parallel by constructing separate visual vocabularies for appearance and motion. A category-specific appearance map is then learned to modulate the weights of the deep motion features. The proposed representation is discriminative and binds the deep local convolutional features to their spatial locations. Experiments are performed on two challenging datasets: JHMDB dataset with 21 action classes and ACT dataset with 43 categories. The results clearly demonstrate that our approach outperforms both standard approaches of early and late feature fusion. Further, our approach is only employing action labels and without exploiting body part information, but achieves competitive performance compared to the state-of-the-art deep features based approaches.
Keywords: Action recognition; CNNs; Feature fusion
|
|
Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer, Matthieu Molinier, & Jorma Laaksonen. (2018). Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification. ISPRS J - ISPRS Journal of Photogrammetry and Remote Sensing, 138, 74–85.
Abstract: Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene
Keywords: Remote sensing; Deep learning; Scene classification; Local Binary Patterns; Texture analysis
|
|
Jordi Roca. (2012). Constancy and inconstancy in categorical colour perception (Maria Vanrell, & C. Alejandro Parraga, Eds.). Ph.D. thesis, , .
Abstract: To recognise objects is perhaps the most important task an autonomous system, either biological or artificial needs to perform. In the context of human vision, this is partly achieved by recognizing the colour of surfaces despite changes in the wavelength distribution of the illumination, a property called colour constancy. Correct surface colour recognition may be adequately accomplished by colour category matching without the need to match colours precisely, therefore categorical colour constancy is likely to play an important role for object identification to be successful. The main aim of this work is to study the relationship between colour constancy and categorical colour perception. Previous studies of colour constancy have shown the influence of factors such the spatio-chromatic properties of the background, individual observer's performance, semantics, etc. However there is very little systematic study of these influences. To this end, we developed a new approach to colour constancy which includes both individual observers' categorical perception, the categorical structure of the background, and their interrelations resulting in a more comprehensive characterization of the phenomenon. In our study, we first developed a new method to analyse the categorical structure of 3D colour space, which allowed us to characterize individual categorical colour perception as well as quantify inter-individual variations in terms of shape and centroid location of 3D categorical regions. Second, we developed a new colour constancy paradigm, termed chromatic setting, which allows measuring the precise location of nine categorically-relevant points in colour space under immersive illumination. Additionally, we derived from these measurements a new colour constancy index which takes into account the magnitude and orientation of the chromatic shift, memory effects and the interrelations among colours and a model of colour naming tuned to each observer/adaptation state. Our results lead to the following conclusions: (1) There exists large inter-individual variations in the categorical structure of colour space, and thus colour naming ability varies significantly but this is not well predicted by low-level chromatic discrimination ability; (2) Analysis of the average colour naming space suggested the need for an additional three basic colour terms (turquoise, lilac and lime) for optimal colour communication; (3) Chromatic setting improved the precision of more complex linear colour constancy models and suggested that mechanisms other than cone gain might be best suited to explain colour constancy; (4) The categorical structure of colour space is broadly stable under illuminant changes for categorically balanced backgrounds; (5) Categorical inconstancy exists for categorically unbalanced backgrounds thus indicating that categorical information perceived in the initial stages of adaptation may constrain further categorical perception.
|
|
David Augusto Rojas. (2009). Colouring Local Feature Detection for Matching (Vol. 133). Master's thesis, , Bellaterra, Barcelona.
|
|
Jordi Roca, A.Owen, G.Jordan, Y.Ling, C. Alejandro Parraga, & A.Hurlbert. (2011). Inter-individual Variations in Color Naming and the Structure of 3D Color Space. In Journal of Vision (Vol. 12, 166).
Abstract: 36.307
Many everyday behavioural uses of color vision depend on color naming ability, which is neither measured nor predicted by most standardized tests of color vision, for either normal or anomalous color vision. Here we demonstrate a new method to quantify color naming ability by deriving a compact computational description of individual 3D color spaces. Methods: Individual observers underwent standardized color vision diagnostic tests (including anomaloscope testing) and a series of custom-made color naming tasks using 500 distinct color samples, either CRT stimuli (“light”-based) or Munsell chips (“surface”-based), with both forced- and free-choice color naming paradigms. For each subject, we defined his/her color solid as the set of 3D convex hulls computed for each basic color category from the relevant collection of categorised points in perceptually uniform CIELAB space. From the parameters of the convex hulls, we derived several indices to characterise the 3D structure of the color solid and its inter-individual variations. Using a reference group of 25 normal trichromats (NT), we defined the degree of normality for the shape, location and overlap of each color region, and the extent of “light”-“surface” agreement. Results: Certain features of color perception emerge from analysis of the average NT color solid, e.g.: (1) the white category is slightly shifted towards blue; and (2) the variability in category border location across NT subjects is asymmetric across color space, with least variability in the blue/green region. Comparisons between individual and average NT indices reveal specific naming “deficits”, e.g.: (1) Category volumes for white, green, brown and grey are expanded for anomalous trichromats and dichromats; and (2) the focal structure of color space is disrupted more in protanopia than other forms of anomalous color vision. The indices both capture the structure of subjective color spaces and allow us to quantify inter-individual differences in color naming ability.
|
|
Jordi Roca, C. Alejandro Parraga, & Maria Vanrell. (2011). Categorical Focal Colours are Structurally Invariant Under Illuminant Changes. In European Conference on Visual Perception (196). Perception 40.
Abstract: The visual system perceives the colour of surfaces approximately constant under changes of illumination. In this work, we investigate how stable is the perception of categorical \“focal\” colours and their interrelations with varying illuminants and simple chromatic backgrounds. It has been proposed that best examples of colour categories across languages cluster in small regions of the colour space and are restricted to a set of 11 basic terms (Kay and Regier, 2003 Proceedings of the National Academy of Sciences of the USA 100 9085\–9089). Following this, we developed a psychophysical paradigm that exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. The experiment was run on a CRT monitor (inside a dark room) under various simulated illuminants. We modelled the recorded data for each subject and adapted state as a 3D interconnected structure (graph) in Lab space. The graph nodes were the subject\’s focal colours at each adaptation state. The model allowed us to get a better distance measure between focal structures under different illuminants. We found that perceptual focal structures tend to be preserved better than the structures of the physical \“ideal\” colours under illuminant changes.
|
|
Jordi Roca, C. Alejandro Parraga, & Maria Vanrell. (2012). Predicting categorical colour perception in successive colour constancy. In Perception (Vol. 41, 138).
Abstract: Colour constancy is a perceptual mechanism that seeks to keep the colour of objects relatively stable under an illumination shift. Experiments haveshown that its effects depend on the number of colours present in the scene. We
studied categorical colour changes under different adaptation states, in particular, whether the colour categories seen under a chromatically neutral illuminant are the same after a shift in the chromaticity of the illumination. To do this, we developed the chromatic setting paradigm (2011 Journal of Vision11 349), which is as an extension of achromatic setting to colour categories. The paradigm exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. Our experiments were run on a CRT monitor (inside a dark room) under various simulated illuminants and restricting the number of colours of the Mondrian background to three, thus weakening the adaptation effect. Our results show a change in the colour categories present before (under neutral illumination) and after adaptation (under coloured illuminants) with a tendency for adapted colours to be less saturated than before adaptation. This behaviour was predicted by a simple
affine matrix model, adjusted to the chromatic setting results.
|
|
Jordi Roca, C. Alejandro Parraga, & Maria Vanrell. (2013). Chromatic settings and the structural color constancy index. JV - Journal of Vision, 13(4-3), 1–26.
Abstract: Color constancy is usually measured by achromatic setting, asymmetric matching, or color naming paradigms, whose results are interpreted in terms of indexes and models that arguably do not capture the full complexity of the phenomenon. Here we propose a new paradigm, chromatic setting, which allows a more comprehensive characterization of color constancy through the measurement of multiple points in color space under immersive adaptation. We demonstrated its feasibility by assessing the consistency of subjects' responses over time. The paradigm was applied to two-dimensional (2-D) Mondrian stimuli under three different illuminants, and the results were used to fit a set of linear color constancy models. The use of multiple colors improved the precision of more complex linear models compared to the popular diagonal model computed from gray. Our results show that a diagonal plus translation matrix that models mechanisms other than cone gain might be best suited to explain the phenomenon. Additionally, we calculated a number of color constancy indices for several points in color space, and our results suggest that interrelations among colors are not as uniform as previously believed. To account for this variability, we developed a new structural color constancy index that takes into account the magnitude and orientation of the chromatic shift in addition to the interrelations among colors and memory effects.
|
|
Jose Carlos Rubio. (2009). Graph matching based on graphical models with application to vehicle tracking and classification at night (Vol. 144). Master's thesis, , Bellaterra, Barcelona.
|
|
Ivet Rafegas, Javier Vazquez, Robert Benavente, Maria Vanrell, & Susana Alvarez. (2017). Enhancing spatio-chromatic representation with more-than-three color coding for image description. JOSA A - Journal of the Optical Society of America A, 34(5), 827–837.
Abstract: Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.
|
|
Ivet Rafegas, Maria Vanrell, Luis A Alexandre, & G. Arias. (2020). Understanding trained CNNs by indexing neuron selectivity. PRL - Pattern Recognition Letters, 136, 318–325.
Abstract: The impressive performance of Convolutional Neural Networks (CNNs) when solving different vision problems is shadowed by their black-box nature and our consequent lack of understanding of the representations they build and how these representations are organized. To help understanding these issues, we propose to describe the activity of individual neurons by their Neuron Feature visualization and quantify their inherent selectivity with two specific properties. We explore selectivity indexes for: an image feature (color); and an image label (class membership). Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties. It helps to find color selective neurons, such as a red-mushroom neuron in layer Conv4 or class selective neurons such as dog-face neurons in layer Conv5 in VGG-M, and establishes a methodology to derive other selectivity properties. Indexing on neuron selectivity can statistically draw how features and classes are represented through layers in a moment when the size of trained nets is growing and automatic tools to index neurons can be helpful.
|
|
Adria Ruiz, Joost Van de Weijer, & Xavier Binefa. (2014). Regularized Multi-Concept MIL for weakly-supervised facial behavior categorization. In 25th British Machine Vision Conference.
Abstract: We address the problem of estimating high-level semantic labels for videos of recorded people by means of analysing their facial expressions. This problem, to which we refer as facial behavior categorization, is a weakly-supervised learning problem where we do not have access to frame-by-frame facial gesture annotations but only weak-labels at the video level are available. Therefore, the goal is to learn a set of discriminative expressions and how they determine the video weak-labels. Facial behavior categorization can be posed as a Multi-Instance-Learning (MIL) problem and we propose a novel MIL method called Regularized Multi-Concept MIL to solve it. In contrast to previous approaches applied in facial behavior analysis, RMC-MIL follows a Multi-Concept assumption which allows different facial expressions (concepts) to contribute differently to the video-label. Moreover, to handle with the high-dimensional nature of facial-descriptors, RMC-MIL uses a discriminative approach to model the concepts and structured sparsity regularization to discard non-informative features. RMC-MIL is posed as a convex-constrained optimization problem where all the parameters are jointly learned using the Projected-Quasi-Newton method. In our experiments, we use two public data-sets to show the advantages of the Regularized Multi-Concept approach and its improvement compared to existing MIL methods. RMC-MIL outperforms state-of-the-art results in the UNBC data-set for pain detection.
|
|
Adria Ruiz, Joost Van de Weijer, & Xavier Binefa. (2015). From emotions to action units with hidden and semi-hidden-task learning. In 16th IEEE International Conference on Computer Vision (pp. 3703–3711).
Abstract: Limited annotated training data is a challenging problem in Action Unit recognition. In this paper, we investigate how the use of large databases labelled according to the 6 universal facial expressions can increase the generalization ability of Action Unit classifiers. For this purpose, we propose a novel learning framework: Hidden-Task Learning. HTL aims to learn a set of Hidden-Tasks (Action Units)for which samples are not available but, in contrast, training data is easier to obtain from a set of related VisibleTasks (Facial Expressions). To that end, HTL is able to exploit prior knowledge about the relation between Hidden and Visible-Tasks. In our case, we base this prior knowledge on empirical psychological studies providing statistical correlations between Action Units and universal facial expressions. Additionally, we extend HTL to Semi-Hidden Task Learning (SHTL) assuming that Action Unit training samples are also provided. Performing exhaustive experiments over four different datasets, we show that HTL and SHTL improve the generalization ability of AU classifiers by training them with additional facial expression data. Additionally, we show that SHTL achieves competitive performance compared with state-of-the-art Transductive Learning approaches which face the problem of limited training data by using unlabelled test samples during training.
|
|
Hassan Ahmed Sial, Ramon Baldrich, & Maria Vanrell. (2020). Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects. JOSA A - Journal of the Optical Society of America A, 37(1), 1–15.
Abstract: Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.
|
|
Hassan Ahmed Sial, Ramon Baldrich, Maria Vanrell, & Dimitris Samaras. (2020). Light Direction and Color Estimation from Single Image with Deep Regression. In London Imaging Conference.
Abstract: We present a method to estimate the direction and color of the scene light source from a single image. Our method is based on two main ideas: (a) we use a new synthetic dataset with strong shadow effects with similar constraints to the SID dataset; (b) we define a deep architecture trained on the mentioned dataset to estimate the direction and color of the scene light source. Apart from showing good performance on synthetic images, we additionally propose a preliminary procedure to obtain light positions of the Multi-Illumination dataset, and, in this way, we also prove that our trained model achieves good performance when it is applied to real scenes.
|
|
Albin Soutif, Antonio Carta, Andrea Cossu, Julio Hurtado, Hamed Hemati, Vincenzo Lomonaco, et al. (2023). A Comprehensive Empirical Evaluation on Online Continual Learning. In Visual Continual Learning (ICCV-W).
Abstract: Online continual learning aims to get closer to a live learning experience by learning directly on a stream of data with temporally shifting distribution and by storing a minimum amount of data from that stream. In this empirical evaluation, we evaluate various methods from the literature that tackle online continual learning. More specifically, we focus on the class-incremental setting in the context of image classification, where the learner must learn new classes incrementally from a stream of data. We compare these methods on the Split-CIFAR100 and Split-TinyImagenet benchmarks, and measure their average accuracy, forgetting, stability, and quality of the representations, to evaluate various aspects of the algorithm at the end but also during the whole training period. We find that most methods suffer from stability and underfitting issues. However, the learned representations are comparable to i.i.d. training under the same computational budget. No clear winner emerges from the results and basic experience replay, when properly tuned and implemented, is a very strong baseline. We release our modular and extensible codebase at this https URL based on the avalanche framework to reproduce our results and encourage future research.
|
|
Albin Soutif, Antonio Carta, & Joost Van de Weijer. (2023). Improving Online Continual Learning Performance and Stability with Temporal Ensembles. In 2nd Conference on Lifelong Learning Agents.
Abstract: Neural networks are very effective when trained on large datasets for a large number of iterations. However, when they are trained on non-stationary streams of data and in an online fashion, their performance is reduced (1) by the online setup, which limits the availability of data, (2) due to catastrophic forgetting because of the non-stationary nature of the data. Furthermore, several recent works (Caccia et al., 2022; Lange et al., 2023) arXiv:2205.13452 showed that replay methods used in continual learning suffer from the stability gap, encountered when evaluating the model continually (rather than only on task boundaries). In this article, we study the effect of model ensembling as a way to improve performance and stability in online continual learning. We notice that naively ensembling models coming from a variety of training tasks increases the performance in online continual learning considerably. Starting from this observation, and drawing inspirations from semi-supervised learning ensembling methods, we use a lightweight temporal ensemble that computes the exponential moving average of the weights (EMA) at test time, and show that it can drastically increase the performance and stability when used in combination with several methods from the literature.
|
|