Pau Rodriguez, Miguel Angel Bautista, Sergio Escalera, & Jordi Gonzalez. (2018). Beyond Oneshot Encoding: lower dimensional target embedding. IMAVIS - Image and Vision Computing, 75, 21–31.
Abstract: Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates.
Keywords: Error correcting output codes; Output embeddings; Deep learning; Computer vision
|
Bogdan Raducanu, Alireza Bosaghzadeh, & Fadi Dornaika. (2015). Multi-observation Face Recognition in Videos based on Label Propagation. In 6th Workshop on Analysis and Modeling of Faces and Gestures AMFG2015 (pp. 10–17).
Abstract: In order to deal with the huge amount of content generated by social media, especially for indexing and retrieval purposes, the focus shifted from single object recognition to multi-observation object recognition. Of particular interest is the problem of face recognition (used as primary cue for persons’ identity assessment), since it is highly required by popular social media search engines like Facebook and Youtube. Recently, several approaches for graph-based label propagation were proposed. However, the associated graphs were constructed in an ad-hoc manner (e.g., using the KNN graph) that cannot cope properly with the rapid and frequent changes in data appearance, a phenomenon intrinsically related with video sequences. In this paper, we
propose a novel approach for efficient and adaptive graph construction, based on a two-phase scheme: (i) the first phase is used to adaptively find the neighbors of a sample and also to find the adequate weights for the minimization function of the second phase; (ii) in the second phase, the
selected neighbors along with their corresponding weights are used to locally and collaboratively estimate the sparse affinity matrix weights. Experimental results performed on Honda Video Database (HVDB) and a subset of video
sequences extracted from the popular TV-series ’Friends’ show a distinct advantage of the proposed method over the existing standard graph construction methods.
|
Bogdan Raducanu, Alireza Bosaghzadeh, & Fadi Dornaika. (2014). Facial Expression Recognition based on Multi-view Observations with Application to Social Robotics. In 1st Workshop on Computer Vision for Affective Computing (pp. 1–8).
Abstract: Human-robot interaction is a hot topic nowadays in the social robotics community. One crucial aspect is represented by the affective communication which comes encoded through the facial expressions. In this paper, we propose a novel approach for facial expression recognition, which exploits an efficient and adaptive graph-based label propagation (semi-supervised mode) in a multi-observation framework. The facial features are extracted using an appearance-based 3D face tracker, view- and texture independent. Our method has been extensively tested on the CMU dataset, and has been conveniently compared with other methods for graph construction. With the proposed approach, we developed an application for an AIBO robot, in which it mirrors the recognized facial
expression.
|
Mohammed Al Rawi, & Ernest Valveny. (2019). Compact and Efficient Multitask Learning in Vision, Language and Speech. In IEEE International Conference on Computer Vision Workshops (pp. 2933–2942).
Abstract: Across-domain multitask learning is a challenging area of computer vision and machine learning due to the intra-similarities among class distributions. Addressing this problem to cope with the human cognition system by considering inter and intra-class categorization and recognition complicates the problem even further. We propose in this work an effective holistic and hierarchical learning by using a text embedding layer on top of a deep learning model. We also propose a novel sensory discriminator approach to resolve the collisions between different tasks and domains. We then train the model concurrently on textual sentiment analysis, speech recognition, image classification, action recognition from video, and handwriting word spotting of two different scripts (Arabic and English). The model we propose successfully learned different tasks across multiple domains.
|
Ivet Rafegas, & Maria Vanrell. (2017). Color representation in CNNs: parallelisms with biological vision. In ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision.
Abstract: Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
|
Ivet Rafegas, & Maria Vanrell. (2016). Colour Visual Coding in trained Deep Neural Networks. In European Conference on Visual Perception.
|
Ivet Rafegas, & Maria Vanrell. (2016). Color spaces emerging from deep convolutional networks. In 24th Color and Imaging Conference (pp. 225–230).
Abstract: Award for the best interactive session
Defining color spaces that provide a good encoding of spatio-chromatic properties of color surfaces is an open problem in color science [8, 22]. Related to this, in computer vision the fusion of color with local image features has been studied and evaluated [16]. In human vision research, the cells which are selective to specific color hues along the visual pathway are also a focus of attention [7, 14]. In line with these research aims, in this paper we study how color is encoded in a deep Convolutional Neural Network (CNN) that has been trained on more than one million natural images for object recognition. These convolutional nets achieve impressive performance in computer vision, and rival the representations in human brain. In this paper we explore how color is represented in a CNN architecture that can give some intuition about efficient spatio-chromatic representations. In convolutional layers the activation of a neuron is related to a spatial filter, that combines spatio-chromatic representations. We use an inverted version of it to explore the properties. Using a series of unsupervised methods we classify different type of neurons depending on the color axes they define and we propose an index of color-selectivity of a neuron. We estimate the main color axes that emerge from this trained net and we prove that colorselectivity of neurons decreases from early to deeper layers.
|
Arnau Ramisa, David Aldavert, Shrihari Vasudevan, Ricardo Toledo, & Ramon Lopez de Mantaras. (2012). Evaluation of Three Vision Based Object Perception Methods for a Mobile Robot. JIRC - Journal of Intelligent and Robotic Systems, 68(2), 185–208.
Abstract: This paper addresses visual object perception applied to mobile robotics. Being able to perceive household objects in unstructured environments is a key capability in order to make robots suitable to perform complex tasks in home environments. However, finding a solution for this task is daunting: it requires the ability to handle the variability in image formation in a moving camera with tight time constraints. The paper brings to attention some of the issues with applying three state of the art object recognition and detection methods in a mobile robotics scenario, and proposes methods to deal with windowing/segmentation. Thus, this work aims at evaluating the state-of-the-art in object perception in an attempt to develop a lightweight solution for mobile robotics use/research in typical indoor settings.
|
Arnau Ramisa, David Aldavert, Shrihari Vasudevan, Ricardo Toledo, & Ramon Lopez de Mantaras. (2011). The IIIA30 MObile Robot Object Recognition Datset. In 11th Portuguese Robotics Open.
Abstract: Object perception is a key feature in order to make mobile robots able to perform high-level tasks. However, research aimed at addressing the constraints and limitations encountered in a mobile robotics scenario, like low image resolution, motion blur or tight computational constraints, is still very scarce. In order to facilitate future research in this direction, in this work we present an object detection and recognition dataset acquired using a mobile robotic platform. As a baseline for the dataset, we evaluated the cascade of weak classifiers object detection method from Viola and Jones.
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo, & Josep Llados. (2015). Towards Query-by-Speech Handwritten Keyword Spotting. In 13th International Conference on Document Analysis and Recognition ICDAR2015 (pp. 501–505).
Abstract: In this paper, we present a new querying paradigm for handwritten keyword spotting. We propose to represent handwritten word images both by visual and audio representations, enabling a query-by-speech keyword spotting system. The two representations are merged together and projected to a common sub-space in the training phase. This transform allows to, given a spoken query, retrieve word instances that were only represented by the visual modality. In addition, the same method can be used backwards at no additional cost to produce a handwritten text-tospeech system. We present our first results on this new querying mechanism using synthetic voices over the George Washington
dataset.
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo, & Josep Llados. (2015). Efficient segmentation-free keyword spotting in historical document collections. PR - Pattern Recognition, 48(2), 545–555.
Abstract: In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.
Keywords: Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo, & Josep Llados. (2011). Browsing Heterogeneous Document Collections by a Segmentation-Free Word Spotting Method. In 11th International Conference on Document Analysis and Recognition (pp. 63–67).
Abstract: In this paper, we present a segmentation-free word spotting method that is able to deal with heterogeneous document image collections. We propose a patch-based framework where patches are represented by a bag-of-visual-words model powered by SIFT descriptors. A later refinement of the feature vectors is performed by applying the latent semantic indexing technique. The proposed method performs well on both handwritten and typewritten historical document images. We have also tested our method on documents written in non-Latin scripts.
|
Muhammad Anwer Rao. (2013). Color for Object Detection and Action Recognition (Antonio Lopez, & Joost Van de Weijer, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Recognizing object categories in real world images is a challenging problem in computer vision. The deformable part based framework is currently the most successful approach for object detection. Generally, HOG are used for image representation within the part-based framework. For action recognition, the bag-of-word framework has shown to provide promising results. Within the bag-of-words framework, local image patches are described by SIFT descriptor. Contrary to object detection and action recognition, combining color and shape has shown to provide the best performance for object and scene recognition.
In the first part of this thesis, we analyze the problem of person detection in still images. Standard person detection approaches rely on intensity based features for image representation while ignoring the color. Channel based descriptors is one of the most commonly used approaches in object recognition. This inspires us to evaluate incorporating color information using the channel based fusion approach for the task of person detection.
In the second part of the thesis, we investigate the problem of object detection in still images. Due to high dimensionality, channel based fusion increases the computational cost. Moreover, channel based fusion has been found to obtain inferior results for object category where one of the visual varies significantly. On the other hand, late fusion is known to provide improved results for a wide range of object categories. A consequence of late fusion strategy is the need of a pure color descriptor. Therefore, we propose to use Color attributes as an explicit color representation for object detection. Color attributes are compact and computationally efficient. Consequently color attributes are combined with traditional shape features providing excellent results for object detection task.
Finally, we focus on the problem of action detection and classification in still images. We investigate the potential of color for action classification and detection in still images. We also evaluate different fusion approaches for combining color and shape information for action recognition. Additionally, an analysis is performed to validate the contribution of color for action recognition. Our results clearly demonstrate that combining color and shape information significantly improve the performance of both action classification and detection in still images.
|
Sebastian Ramos. (2014). Vision-based Detection of Road Hazards for Autonomous Driving. Master's thesis, , .
|
Mohammed Al Rawi, & Dimosthenis Karatzas. (2018). On the Labeling Correctness in Computer Vision Datasets. In Proceedings of the Workshop on Interactive Adaptive Learning, co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.
Abstract: Image datasets have heavily been used to build computer vision systems.
These datasets are either manually or automatically labeled, which is a
problem as both labeling methods are prone to errors. To investigate this problem, we use a majority voting ensemble that combines the results from several Convolutional Neural Networks (CNNs). Majority voting ensembles not only enhance the overall performance, but can also be used to estimate the confidence level of each sample. We also examined Softmax as another form to estimate posterior probability. We have designed various experiments with a range of different ensembles built from one or different, or temporal/snapshot CNNs, which have been trained multiple times stochastically. We analyzed CIFAR10, CIFAR100, EMNIST, and SVHN datasets and we found quite a few incorrect
labels, both in the training and testing sets. We also present detailed confidence analysis on these datasets and we found that the ensemble is better than the Softmax when used estimate the per-sample confidence. This work thus proposes an approach that can be used to scrutinize and verify the labeling of computer vision datasets, which can later be applied to weakly/semi-supervised learning. We propose a measure, based on the Odds-Ratio, to quantify how many of these incorrectly classified labels are actually incorrectly labeled and how many of these are confusing. The proposed methods are easily scalable to larger datasets, like ImageNet, LSUN and SUN, as each CNN instance is trained for 60 epochs; or even faster, by implementing a temporal (snapshot) ensemble.
|