|   | 
Details
   web
Records
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal
Title Graph-Based Deep Generative Modelling for Document Layout Generation Type Conference Article
Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 12917 Issue Pages 525-537
Keywords
Abstract One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices.
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.140; 110.312 Approved no
Call Number (up) Admin @ si @ BRL2021 Serial 3676
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal
Title DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis Type Conference Article
Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 12823 Issue Pages 555–568
Keywords
Abstract Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind.
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.140; 110.312 Approved no
Call Number (up) Admin @ si @ BRL2021a Serial 3573
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal
Title Beyond Document Object Detection: Instance-Level Segmentation of Complex Layouts Type Journal Article
Year 2021 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR
Volume 24 Issue Pages 269–281
Keywords
Abstract Information extraction is a fundamental task of many business intelligence services that entail massive document processing. Understanding a document page structure in terms of its layout provides contextual support which is helpful in the semantic interpretation of the document terms. In this paper, inspired by the progress of deep learning methodologies applied to the task of object recognition, we transfer these models to the specific case of document object detection, reformulating the traditional problem of document layout analysis. Moreover, we importantly contribute to prior arts by defining the task of instance segmentation on the document image domain. An instance segmentation paradigm is especially important in complex layouts whose contents should interact for the proper rendering of the page, i.e., the proper text wrapping around an image. Finally, we provide an extensive evaluation, both qualitative and quantitative, that demonstrates the superior performance of the proposed methodology over the current state of the art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.140; 110.312 Approved no
Call Number (up) Admin @ si @ BRL2021b Serial 3574
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani; Pau Rodriguez; Armin Mehri; Isabelle Hupont; Carles Fernandez; Jordi Gonzalez
Title OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling Network Type Conference Article
Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 2693-2702
Keywords
Abstract Super-resolution (SR) has achieved great success due to the development of deep convolutional neural networks (CNNs). However, as the depth and width of the networks increase, CNN-based SR methods have been faced with the challenge of computational complexity in practice. More- over, most SR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. To address these limitations we introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model. We make the following contributions: first, we introduce a lightweight feature extractor that enforces efficient reuse of information through a novel recursive structure of skip and dense connections. Second, to maximize the performance of the feature extractor, we propose a model agnostic reconstruction module that generates accurate high-resolution images from overscaled feature maps obtained from any SR architecture. Third, we introduce a multi-scale loss function to achieve generalization across scales. Experiments show that our proposal outperforms previous state-of-the-art approaches in standard benchmarks, while maintaining relatively low computation and memory requirements.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes ISE; 600.119; 600.098 Approved no
Call Number (up) Admin @ si @ BRM2021 Serial 3512
Permanent link to this record
 

 
Author David Curto; Albert Clapes; Javier Selva; Sorina Smeureanu; Julio C. S. Jacques Junior; David Gallardo-Pujol; Georgina Guilera; David Leiva; Thomas B. Moeslund; Sergio Escalera; Cristina Palmero
Title Dyadformer: A Multi-Modal Transformer for Long-Range Modeling of Dyadic Interactions Type Conference Article
Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal
Volume Issue Pages 2177-2188
Keywords
Abstract Personality computing has become an emerging topic in computer vision, due to the wide range of applications it can be used for. However, most works on the topic have focused on analyzing the individual, even when applied to interaction scenarios, and for short periods of time. To address these limitations, we present the Dyadformer, a novel multi-modal multi-subject Transformer architecture to model individual and interpersonal features in dyadic interactions using variable time windows, thus allowing the capture of long-term interdependencies. Our proposed cross-subject layer allows the network to explicitly model interactions among subjects through attentional operations. This proof-of-concept approach shows how multi-modality and joint modeling of both interactants for longer periods of time helps to predict individual attributes. With Dyadformer, we improve state-of-the-art self-reported personality inference results on individual subjects on the UDIVA v0.5 dataset.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes HUPBA; no proj Approved no
Call Number (up) Admin @ si @ CCS2021 Serial 3648
Permanent link to this record
 

 
Author Joan Codina-Filba; Sergio Escalera; Joan Escudero; Coen Antens; Pau Buch-Cardona; Mireia Farrus
Title Mobile eHealth Platform for Home Monitoring of Bipolar Disorder Type Conference Article
Year 2021 Publication 27th ACM International Conference on Multimedia Modeling Abbreviated Journal
Volume 12573 Issue Pages 330-341
Keywords
Abstract People suffering Bipolar Disorder (BD) experiment changes in mood status having depressive or manic episodes with normal periods in the middle. BD is a chronic disease with a high level of non-adherence to medication that needs a continuous monitoring of patients to detect when they relapse in an episode, so that physicians can take care of them. Here we present MoodRecord, an easy-to-use, non-intrusive, multilingual, robust and scalable platform suitable for home monitoring patients with BD, that allows physicians and relatives to track the patient state and get alarms when abnormalities occur.

MoodRecord takes advantage of the capabilities of smartphones as a communication and recording device to do a continuous monitoring of patients. It automatically records user activity, and asks the user to answer some questions or to record himself in video, according to a predefined plan designed by physicians. The video is analysed, recognising the mood status from images and bipolar assessment scores are extracted from speech parameters. The data obtained from the different sources are merged periodically to observe if a relapse may start and if so, raise the corresponding alarm. The application got a positive evaluation in a pilot with users from three different countries. During the pilot, the predictions of the voice and image modules showed a coherent correlation with the diagnosis performed by clinicians.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MMM
Notes HUPBA; no proj Approved no
Call Number (up) Admin @ si @ CEE2021 Serial 3659
Permanent link to this record
 

 
Author Victor M. Campello; Polyxeni Gkontra; Cristian Izquierdo; Carlos Martin-Isla; Alireza Sojoudi; Peter M. Full; Klaus Maier-Hein; Yao Zhang; Zhiqiang He; Jun Ma; Mario Parreno; Alberto Albiol; Fanwei Kong; Shawn C. Shadden; Jorge Corral Acero; Vaanathi Sundaresan; Mina Saber; Mustafa Elattar; Hongwei Li; Bjoern Menze; Firas Khader; Christoph Haarburger; Cian M. Scannell; Mitko Veta; Adam Carscadden; Kumaradevan Punithakumar; Xiao Liu; Sotirios A. Tsaftaris; Xiaoqiong Huang; Xin Yang; Lei Li; Xiahai Zhuang; David Vilades; Martin L. Descalzo; Andrea Guala; Lucia La Mura; Matthias G. Friedrich; Ria Garg; Julie Lebel; Filipe Henriques; Mahir Karakas; Ersin Cavus; Steffen E. Petersen; Sergio Escalera; Santiago Segui; Jose F. Rodriguez Palomares; Karim Lekadir
Title Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge Type Journal Article
Year 2021 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI
Volume 40 Issue 12 Pages 3543-3554
Keywords
Abstract The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number (up) Admin @ si @ CGI2021 Serial 3653
Permanent link to this record
 

 
Author Xim Cerda-Company; Olivier Penacchio; Xavier Otazu
Title Chromatic Induction in Migraine Type Journal
Year 2021 Publication VISION Abbreviated Journal
Volume 5 Issue 3 Pages 37
Keywords migraine; vision; colour; colour perception; chromatic induction; psychophysics
Abstract The human visual system is not a colorimeter. The perceived colour of a region does not only depend on its colour spectrum, but also on the colour spectra and geometric arrangement of neighbouring regions, a phenomenon called chromatic induction. Chromatic induction is thought to be driven by lateral interactions: the activity of a central neuron is modified by stimuli outside its classical receptive field through excitatory–inhibitory mechanisms. As there is growing evidence of an excitation/inhibition imbalance in migraine, we compared chromatic induction in migraine and control groups. As hypothesised, we found a difference in the strength of induction between the two groups, with stronger induction effects in migraine. On the other hand, given the increased prevalence of visual phenomena in migraine with aura, we also hypothesised that the difference between migraine and control would be more important in migraine with aura than in migraine without aura. Our experiments did not support this hypothesis. Taken together, our results suggest a link between excitation/inhibition imbalance and increased induction effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT; no proj Approved no
Call Number (up) Admin @ si @ CPO2021 Serial 3589
Permanent link to this record
 

 
Author Alejandro Cartas; Petia Radeva; Mariella Dimiccoli
Title Modeling long-term interactions to enhance action recognition Type Conference Article
Year 2021 Publication 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 10351-10358
Keywords
Abstract In this paper, we propose a new approach to under-stand actions in egocentric videos that exploits the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical LongShort-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks,without relying on motion information
Address January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes MILAB; Approved no
Call Number (up) Admin @ si @ CRD2021 Serial 3626
Permanent link to this record
 

 
Author Jialuo Chen; Mohamed Ali Souibgui; Alicia Fornes; Beata Megyesi
Title Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images Type Conference Article
Year 2021 Publication 4th International Conference on Historical Cryptology Abbreviated Journal
Volume Issue Pages 34-37
Keywords
Abstract Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering.
Address Virtual; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference HistoCrypt
Notes DAG; 602.230; 600.140; 600.121 Approved no
Call Number (up) Admin @ si @ CSF2021 Serial 3617
Permanent link to this record
 

 
Author Jorge Charco; Angel Sappa; Boris X. Vintimilla; Henry Velesaca
Title Camera pose estimation in multi-view environments: From virtual scenarios to the real world Type Journal Article
Year 2021 Publication Image and Vision Computing Abbreviated Journal IVC
Volume 110 Issue Pages 104182
Keywords
Abstract This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used, highlighting the importance on the similarity between virtual-real scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; 600.130; 600.122 Approved no
Call Number (up) Admin @ si @ CSV2021 Serial 3577
Permanent link to this record
 

 
Author Trevor Canham; Javier Vazquez; D Long; Richard F. Murray; Michael S Brown
Title Noise Prism: A Novel Multispectral Visualization Technique Type Journal Article
Year 2021 Publication 31st Color and Imaging Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract A novel technique for visualizing multispectral images is proposed. Inspired by how prisms work, our method spreads spectral information over a chromatic noise pattern. This is accomplished by populating the pattern with pixels representing each measurement band at a count proportional to its measured intensity. The method is advantageous because it allows for lightweight encoding and visualization of spectral information
while maintaining the color appearance of the stimulus. A four alternative forced choice (4AFC) experiment was conducted to validate the method’s information-carrying capacity in displaying metameric stimuli of varying colors and spectral basis functions. The scores ranged from 100% to 20% (less than chance given the 4AFC task), with many conditions falling somewhere in between at statistically significant intervals. Using this data, color and texture difference metrics can be evaluated and optimized to predict the legibility of the visualization technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes MACO; CIC Approved no
Call Number (up) Admin @ si @ CVL2021 Serial 4000
Permanent link to this record
 

 
Author Trevor Canham; Javier Vazquez; Elise Mathieu; Marcelo Bertalmío
Title Matching visual induction effects on screens of different size Type Journal Article
Year 2021 Publication Journal of Vision Abbreviated Journal JOV
Volume 21 Issue 6(10) Pages 1-22
Keywords
Abstract In the film industry, the same movie is expected to be watched on displays of vastly different sizes, from cinema screens to mobile phones. But visual induction, the perceptual phenomenon by which the appearance of a scene region is affected by its surroundings, will be different for the same image shown on two displays of different dimensions. This phenomenon presents a practical challenge for the preservation of the artistic intentions of filmmakers, because it can lead to shifts in image appearance between viewing destinations. In this work, we show that a neural field model based on the efficient representation principle is able to predict induction effects and how, by regularizing its associated energy functional, the model is still able to represent induction but is now invertible. From this finding, we propose a method to preprocess an image in a screen–size dependent way so that its perception, in terms of visual induction, may remain constant across displays of different size. The potential of the method is demonstrated through psychophysical experiments on synthetic images and qualitative examples on natural images.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number (up) Admin @ si @ CVM2021 Serial 3595
Permanent link to this record
 

 
Author Clementine Decamps; Alexis Arnaud; Florent Petitprez; Mira Ayadi; Aurelia Baures; Lucile Armenoult; Sergio Escalera; Isabelle Guyon; Remy Nicolle; Richard Tomasini; Aurelien de Reynies; Jerome Cros; Yuna Blum; Magali Richard
Title DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification Type Journal Article
Year 2021 Publication BMC Bioinformatics Abbreviated Journal
Volume 22 Issue Pages 473
Keywords
Abstract Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number (up) Admin @ si @ DAP2021 Serial 3650
Permanent link to this record
 

 
Author Manisha Das; Deep Gupta; Petia Radeva; Ashwini M. Bakde
Title Multi-scale decomposition-based CT-MR neurological image fusion using optimized bio-inspired spiking neural model with meta-heuristic optimization Type Journal Article
Year 2021 Publication International Journal of Imaging Systems and Technology Abbreviated Journal IMA
Volume 31 Issue 4 Pages 2170-2188
Keywords
Abstract Multi-modal medical image fusion plays an important role in clinical diagnosis and works as an assistance model for clinicians. In this paper, a computed tomography-magnetic resonance (CT-MR) image fusion model is proposed using an optimized bio-inspired spiking feedforward neural network in different decomposition domains. First, source images are decomposed into base (low-frequency) and detail (high-frequency) layer components. Low-frequency subbands are fused using texture energy measures to capture the local energy, contrast, and small edges in the fused image. High-frequency coefficients are fused using firing maps obtained by pixel-activated neural model with the optimized parameters using three different optimization techniques such as differential evolution, cuckoo search, and gray wolf optimization, individually. In the optimization model, a fitness function is computed based on the edge index of resultant fused images, which helps to extract and preserve sharp edges available in the source CT and MR images. To validate the fusion performance, a detailed comparative analysis is presented among the proposed and state-of-the-art methods in terms of quantitative and qualitative measures along with computational complexity. Experimental results show that the proposed method produces a significantly better visual quality of fused images meanwhile outperforms the existing methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number (up) Admin @ si @ DGR2021a Serial 3630
Permanent link to this record