toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Meysam Madadi edit  isbn
openurl 
  Title Human Segmentation, Pose Estimation and Applications Type Book Whole
  Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Automatic analyzing humans in photographs or videos has great potential applications in computer vision, including medical diagnosis, sports, entertainment, movie editing and surveillance, just to name a few. Body, face and hand are the most studied components of humans. Body has many variabilities in shape and clothing along with high degrees of freedom in pose. Face has many muscles causing many visible deformity, beside variable shape and hair style. Hand is a small object, moving fast and has high degrees of freedom. Adding human characteristics to all aforementioned variabilities makes human analysis quite a challenging task.
In this thesis, we developed human segmentation in different modalities. In a first scenario, we segmented human body and hand in depth images using example-based shape warping. We developed a shape descriptor based on shape context and class probabilities of shape regions to extract nearest neighbors. We then considered rigid affine alignment vs. nonrigid iterative shape warping. In a second scenario, we segmented face in RGB images using convolutional neural networks (CNN). We modeled conditional random field with recurrent neural networks. In our model pair-wise kernels are not fixed and learned during training. We trained the network end-to-end using adversarial networks which improved hair segmentation by a high margin.
We also worked on 3D hand pose estimation in depth images. In a generative approach, we fitted a finger model separately for each finger based on our example-based rigid hand segmentation. We minimized an energy function based on overlapping area, depth discrepancy and finger collisions. We also applied linear models in joint trajectory space to refine occluded joints based on visible joints error and invisible joints trajectory smoothness. In a CNN-based approach, we developed a tree-structure network to train specific features for each finger and fused them for global pose consistency. We also formulated physical and appearance constraints as loss functions.
Finally, we developed a number of applications consisting of human soft biometrics measurement and garment retexturing. We also generated some datasets in this thesis consisting of human segmentation, synthetic hand pose, garment retexturing and Italian gestures.
 
  Address October 2017  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Jordi Gonzalez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-3-2 Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number (up) Admin @ si @ Mad2017 Serial 3017  
Permanent link to this record
 

 
Author Guillem Martinez; Maya Aghaei; Martin Dijkstra; Bhalaji Nagarajan; Femke Jaarsma; Jaap van de Loosdrecht; Petia Radeva; Klaas Dijkstra edit   pdf
url  doi
openurl 
  Title Hyper-Spectral Imaging for Overlapping Plastic Flakes Segmentation Type Conference Article
  Year 2022 Publication 47th International Conference on Acoustics, Speech, and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords Hyper-spectral imaging; plastic sorting; multi-label segmentation; bitfield encoding  
  Abstract In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.  
  Address Singapore; May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes MILAB; no proj Approved no  
  Call Number (up) Admin @ si @ MAD2022 Serial 3767  
Permanent link to this record
 

 
Author Javier Marin; Sergio Escalera edit   pdf
url  openurl
  Title SSSGAN: Satellite Style and Structure Generative Adversarial Networks Type Journal Article
  Year 2021 Publication Remote Sensing Abbreviated Journal  
  Volume 13 Issue 19 Pages 3984  
  Keywords  
  Abstract This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number (up) Admin @ si @ MaE2021 Serial 3651  
Permanent link to this record
 

 
Author Andres Mafla edit  isbn
openurl 
  Title Leveraging Scene Text Information for Image Interpretation Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Until recently, most computer vision models remained illiterate, largely ignoring the semantically rich and explicit information contained in scene text. Recent progress in scene text detection and recognition has recently allowed exploring its role in a diverse set of open computer vision problems, e.g. image classification, image-text retrieval, image captioning, and visual question answering to name a few. The explicit semantics of scene text closely requires specific modeling similar to language. However, scene text is a particular signal that has to be interpreted according to a comprehensive perspective that encapsulates all the visual cues in an image. Incorporating this information is a straightforward task for humans, but if we are unfamiliar with a language or scripture, achieving a complete world understanding is impossible (e.a. visiting a foreign country with a different alphabet). Despite the importance of scene text, modeling it requires considering the several ways in which scene text interacts with an image, processing and fusing an additional modality. In this thesis, we mainly focus
on two tasks, scene text-based fine-grained image classification, and cross-modal retrieval. In both studied tasks we identify existing limitations in current approaches and propose plausible solutions. Concretely, in each chapter: i) We define a compact way to embed scene text that generalizes to unseen words at training time while performing in real-time. ii) We incorporate the previously learned scene text embedding to create an image-level descriptor that overcomes optical character recognition (OCR) errors which is well-suited to the fine-grained image classification task. iii) We design a region-level reasoning network that learns the interaction through semantics among salient visual regions and scene text instances. iv) We employ scene text information in image-text matching and introduce the Scene Text Aware Cross-Modal retrieval StacMR task. We gather a dataset that incorporates scene text and design a model suited for the newly studied modality. v) We identify the drawbacks of current retrieval metrics in cross-modal retrieval. An image captioning metric is proposed as a way of better evaluating semantics in retrieved results. Ample experimentation shows that incorporating such semantics into a model yields better semantic results while
requiring significantly less data to converge.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-6-2 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ Maf2022 Serial 3756  
Permanent link to this record
 

 
Author Carlos Martin-Isla; Maryam Asadi-Aghbolaghi; Polyxeni Gkontra; Victor M. Campello; Sergio Escalera; Karim Lekadir edit   pdf
openurl 
  Title Stacked BCDU-net with semantic CMR synthesis: application to Myocardial Pathology Segmentation challenge Type Conference Article
  Year 2020 Publication MYOPS challenge and workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Virtual; October 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes HUPBA Approved no  
  Call Number (up) Admin @ si @ MAG2020 Serial 3518  
Permanent link to this record
 

 
Author A. Martinez edit  openurl
  Title Disseny d´agents autonoms. Type Miscellaneous
  Year 1994 Publication Graduating Project Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Admin @ si @ Mar1994 Serial 236  
Permanent link to this record
 

 
Author Javier Marin edit  openurl
  Title Virtual learning for real testing Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 150 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication bell Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ Mar2009c Serial 2403  
Permanent link to this record
 

 
Author Javier Marin edit  openurl
  Title Pedestrian Detection Based on Local Experts Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract During the last decade vision-based human detection systems have started to play a key rolein multiple applications linked to driver assistance, surveillance, robot sensing and home automation.
Detecting humans is by far one of the most challenging tasks in Computer Vision.
This is mainly due to the high degree of variability in the human appearanceassociated to
the clothing, pose, shape and size. Besides, other factors such as cluttered scenarios, partial occlusions, or environmental conditions can make the detection task even harder.
Most promising methods of the state-of-the-art rely on discriminative learning paradigms which are fed with positive and negative examples. The training data is one of the most
relevant elements in order to build a robust detector as it has to cope the large variability of the target. In order to create this dataset human supervision is required. The drawback at this point is the arduous effort of annotating as well as looking for such claimed variability.
In this PhD thesis we address two recurrent problems in the literature. In the first stage,we aim to reduce the consuming task of annotating, namely, by using computer graphics.
More concretely, we develop a virtual urban scenario for later generating a pedestrian dataset.
Then, we train a detector using this dataset, and finally we assess if this detector can be successfully applied in a real scenario.
In the second stage, we focus on increasing the robustness of our pedestrian detectors
under partial occlusions. In particular, we present a novel occlusion handling approach to increase the performance of block-based holistic methods under partial occlusions. For this purpose, we make use of local experts via a RandomSubspaceMethod (RSM) to handle these cases. If the method infers a possible partial occlusion, then the RSM, based on performance statistics obtained from partially occluded data, is applied. The last objective of this thesis
is to propose a robust pedestrian detector based on an ensemble of local experts. To achieve this goal, we use the random forest paradigm, where the trees act as ensembles an their nodesare the local experts. In particular, each expert focus on performing a robust classification ofa pedestrian body patch. This approach offers computational efficiency and far less design complexity when compared to other state-of-the-artmethods, while reaching better accuracy
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Jaume Amores  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ Mar2013 Serial 2280  
Permanent link to this record
 

 
Author Patricia Marquez edit  isbn
openurl 
  Title A Confidence Framework for the Assessment of Optical Flow Performance Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Optical Flow (OF) is the input of a wide range of decision support systems such as car driver assistance, UAV guiding or medical diagnose. In these real situations, the absence of ground truth forces to assess OF quality using quantities computed from either sequences or the computed optical flow itself. These quantities are generally known as Confidence Measures, CM. Even if we have a proper confidence measure we still need a way to evaluate its ability to discard pixels with an OF prone to have a large error. Current approaches only provide a descriptive evaluation of the CM performance but such approaches are not capable to fairly compare different confidence measures and optical flow algorithms. Thus, it is of prime importance to define a framework and a general road map for the evaluation of optical flow performance.

This thesis provides a framework able to decide which pairs “ optical flow – confidence measure” (OF-CM) are best suited for optical flow error bounding given a confidence level determined by a decision support system. To design this framework we cover the following points:

Descriptive scores. As a first step, we summarize and analyze the sources of inaccuracies in the output of optical flow algorithms. Second, we present several descriptive plots that visually assess CM capabilities for OF error bounding. In addition to the descriptive plots, given a plot representing OF-CM capabilities to bound the error, we provide a numeric score that categorizes the plot according to its decreasing profile, that is, a score assessing CM performance.
Statistical framework. We provide a comparison framework that assesses the best suited OF-CM pair for error bounding that uses a two stage cascade process. First of all we assess the predictive value of the confidence measures by means of a descriptive plot. Then, for a sample of descriptive plots computed over training frames, we obtain a generic curve that will be used for sequences with no ground truth. As a second step, we evaluate the obtained general curve and its capabilities to really reflect the predictive value of a confidence measure using the variability across train frames by means of ANOVA.

The presented framework has shown its potential in the application on clinical decision support systems. In particular, we have analyzed the impact of the different image artifacts such as noise and decay to the output of optical flow in a cardiac diagnose system and we have improved the navigation inside the bronchial tree on bronchoscopy.
 
  Address July 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Aura Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-2-1 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number (up) Admin @ si @ Mar2015 Serial 2687  
Permanent link to this record
 

 
Author Marc Masana edit  isbn
openurl 
  Title Lifelong Learning of Neural Networks: Detecting Novelty and Adapting to New Domains without Forgetting Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Computer vision has gone through considerable changes in the last decade as neural networks have come into common use. As available computational capabilities have grown, neural networks have achieved breakthroughs in many computer vision tasks, and have even surpassed human performance in others. With accuracy being so high, focus has shifted to other issues and challenges. One research direction that saw a notable increase in interest is on lifelong learning systems. Such systems should be capable of efficiently performing tasks, identifying and learning new ones, and should moreover be able to deploy smaller versions of themselves which are experts on specific tasks. In this thesis, we contribute to research on lifelong learning and address the compression and adaptation of networks to small target domains, the incremental learning of networks faced with a variety of tasks, and finally the detection of out-of-distribution samples at inference time.

We explore how knowledge can be transferred from large pretrained models to more task-specific networks capable of running on smaller devices by extracting the most relevant information. Using a pretrained model provides more robust representations and a more stable initialization when learning a smaller task, which leads to higher performance and is known as domain adaptation. However, those models are too large for certain applications that need to be deployed on devices with limited memory and computational capacity. In this thesis we show that, after performing domain adaptation, some learned activations barely contribute to the predictions of the model. Therefore, we propose to apply network compression based on low-rank matrix decomposition using the activation statistics. This results in a significant reduction of the model size and the computational cost.

Like human intelligence, machine intelligence aims to have the ability to learn and remember knowledge. However, when a trained neural network is presented with learning a new task, it ends up forgetting previous ones. This is known as catastrophic forgetting and its avoidance is studied in continual learning. The work presented in this thesis extensively surveys continual learning techniques and presents an approach to avoid catastrophic forgetting in sequential task learning scenarios. Our technique is based on using ternary masks in order to update a network to new tasks, reusing the knowledge of previous ones while not forgetting anything about them. In contrast to earlier work, our masks are applied to the activations of each layer instead of the weights. This considerably reduces the number of parameters to be added for each new task. Furthermore, the analysis on a wide range of work on incremental learning without access to the task-ID, provides insight on current state-of-the-art approaches that focus on avoiding catastrophic forgetting by using regularization, rehearsal of previous tasks from a small memory, or compensating the task-recency bias.

Neural networks trained with a cross-entropy loss force the outputs of the model to tend toward a one-hot encoded vector. This leads to models being too overly confident when presented with images or classes that were not present in the training distribution. The capacity of a system to be aware of the boundaries of the learned tasks and identify anomalies or classes which have not been learned yet is key to lifelong learning and autonomous systems. In this thesis, we present a metric learning approach to out-of-distribution detection that learns the task at hand on an embedding space.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Andrew Bagdanov  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-9-5 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number (up) Admin @ si @ Mas20 Serial 3481  
Permanent link to this record
 

 
Author David Masip edit  openurl
  Title Dimensionality reduction techniques applied to nearest neighbor classification Type Report
  Year 2003 Publication CVC Technical Report #72 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address CVC (UAB)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number (up) Admin @ si @ Mas2003 Serial 519  
Permanent link to this record
 

 
Author David Masip edit  isbn
openurl 
  Title Face Classification Using Discriminative Features and Classifier Combination Type Book Whole
  Year 2005 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address CVC (UAB)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Jordi Vitria  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-3-8 Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number (up) Admin @ si @ Mas2005b Serial 602  
Permanent link to this record
 

 
Author T. Mouats; N. Aouf; Angel Sappa; Cristhian A. Aguilera-Carrasco; Ricardo Toledo edit  doi
openurl 
  Title Multi-Spectral Stereo Odometry Type Journal Article
  Year 2015 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 16 Issue 3 Pages 1210-1224  
  Keywords Egomotion estimation; feature matching; multispectral odometry (MO); optical flow; stereo odometry; thermal imagery  
  Abstract In this paper, we investigate the problem of visual odometry for ground vehicles based on the simultaneous utilization of multispectral cameras. It encompasses a stereo rig composed of an optical (visible) and thermal sensors. The novelty resides in the localization of the cameras as a stereo setup rather
than two monocular cameras of different spectrums. To the best of our knowledge, this is the first time such task is attempted. Log-Gabor wavelets at different orientations and scales are used to extract interest points from both images. These are then described using a combination of frequency and spatial information within the local neighborhood. Matches between the pairs of multimodal images are computed using the cosine similarity function based
on the descriptors. Pyramidal Lucas–Kanade tracker is also introduced to tackle temporal feature matching within challenging sequences of the data sets. The vehicle egomotion is computed from the triangulated 3-D points corresponding to the matched features. A windowed version of bundle adjustment incorporating
Gauss–Newton optimization is utilized for motion estimation. An outlier removal scheme is also included within the framework to deal with outliers. Multispectral data sets were generated and used as test bed. They correspond to real outdoor scenarios captured using our multimodal setup. Finally, detailed results validating the proposed strategy are illustrated.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number (up) Admin @ si @ MAS2015a Serial 2533  
Permanent link to this record
 

 
Author Martha Mackay; Fernando Alonso; Pere Salamero; Xavier Baro; Jordi Gonzalez; Sergio Escalera edit   pdf
openurl 
  Title Care and caring: future proofing the new demographics Type Conference Article
  Year 2015 Publication 6th International Carers Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract With an ageing population, the issue of care provision is becoming increasingly important. The simple aspiration of the majority of older people is to live safely and well at home. Housing will be part of health & care integration in the following years and decades. A higher proportion of people will have to rely on informal care through family, friends, neighbors and others who
provide care to an older person in need of assistance (around 80% of care across the EU). They do not usually have a formal status and are usually unpaid. We need to ensure that all disabled or chronically ill people can get the help they need without overburdening their families.
The physical and emotional stress of carers is one of the dangers that this dependency can bring. To prevent carers burnout it is necessary to provide new solutions that are affordable and user friendly for the families and caregivers.
 
  Address Gothenburg; Sweden; September 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARERS  
  Notes HuPBA; ISE; 600.078;MV Approved no  
  Call Number (up) Admin @ si @ MAS2015b Serial 2678  
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati Ardakani; Angel Sappa edit   pdf
url  doi
openurl 
  Title LiNet: A Lightweight Network for Image Super Resolution Type Conference Article
  Year 2021 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 7196-7202  
  Keywords  
  Abstract This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number (up) Admin @ si @ MAS2021a Serial 3583  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: