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ABSTRACT

Given the hyper-spectral imaging unique potentials in grasp-
ing the polymer characteristics of different materials, it is
commonly used in sorting procedures. In a practical plastic
sorting scenario, multiple plastic flakes may overlap which
depending on their characteristics, the overlap can be re-
flected in their spectral signature. In this work, we use
hyper-spectral imaging for the segmentation of three types
of plastic flakes and their possible overlapping combinations.
We propose an intuitive and simple multi-label encoding
approach, bitfield encoding, to account for the overlapping
regions. With our experiments, we show that the bitfield en-
coding improves over the baseline single-label approach and
we further demonstrate its potential in predicting multiple
labels for overlapping classes even when the model is only
trained with non-overlapping classes.

Index Terms— Hyper-spectral imaging, plastic sorting,
multi-label segmentation, bitfield encoding

1. INTRODUCTION

Plastics are part of our daily routine, which despite their ad-
vantages have tremendous environmental disadvantages in-
cluding the required resources for production and toxicity [1].
Plastic recycling hence is crucial to mitigate this negative en-
vironmental footprint. Within the recycling procedure, plas-
tic objects are collected, shredded into flakes, and washed
as a preparation for analysis of their polymer type [2]. In
this work, we focus on Short-Wave Infrared (SWIR) Hyper-
Spectral Imaging (HSI) for polymer types analysis of the pre-
viously shredded plastic flakes. Due to the unique absorption
of the electromagnetic spectrum by different polymers (i.e.,
the polymer spectral signature), differentiation between them
using HSI becomes possible [3]. This method does not re-
quire sample preparation and can be done in near real-time,
which is an advantage over typical analytical methods [4].

In a practical recycling scenario, using HSI, mixed plastic
flakes directly from the shredder are randomly placed on the
conveyor belt to pass under a Hyper-Spectral (HS) camera.
In this process, two or more flakes may physically overlap
each other which leads to a disturbed spectral signature per-

Fig. 1. Bitfield-encoding depiction for pixel-wise classifica-
tion of plastic flakes, given in two scenarios: a single flake
and two overlapping flakes.

ception. We recognized this issue and propose a simple yet
effective method to recognize the overlapped classes of plas-
tics, given only the primary (non-overlapped) classes during
training. Single-label to multi-label problem is considered an
important problem in computer vision and image processing
literature [5]. In this work, we propose to encode the per-pixel
label as a vector of single binary bits instead of the commonly
used one-hot encoding and refer to this as bitfield encoding.
To put this into perspective, assuming that each single bit in
the bitfield encoding data-structure corresponds to a primary
plastic class in our dataset, the overlap of two or more classes
of plastics can be identified as activating the corresponding
bits to each of the individual overlapping classes. In this way,
we can represent the overlap of classes with the same number
of bits, but activating more than one bit at the same time (see
Fig. 1). We further demonstrate that this representation not
only allows a more intuitive interpretation of multi-label clas-
sification problem but also enables multi-label classification
providing only single-label data in training. Bitfield encoding
can be applied with any classification technique, however, in
this work, we mainly focus on its application with pixel-wise
classification using the U-net segmentation framework [6].
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2. STATE OF THE ART

Multi-fold developments of deep learning enabled vast im-
provements in HSI [7], leading to the emergence of spectral or
spectral-spatial architectures [8]. HybridSN [9] used a com-
bination of spectral-spatial 3D CNN and spatial 2D CNN.
Squeeze-and-Excitation (SE) residual bag-of-feature learn-
ing framework used SE blocks and batch normalization to
suppress feature maps that are irrelevant to the learning pro-
cess. SpectralNET [10] used wavelet CNNs instead of a 3D
CNN to learn the spectral features as they are computation-
ally lighter compared to a 3D CNN computation. The recent
advances in deep learning - attention mechanisms and trans-
formers are also documented in HSI. HSI-BERT [11] used a
multi-head self-attention mechanism to encode the semantic
context-aware representations in order to obtain discrimina-
tory features and A2S2K-ResNet [12] used 3D ResBlocks
and Explainability Failure Ratio (EFR) mechanisms to learn
the spectral-spatial features for HSI classification.

Among the vast number of applications, plastic sorting is
an active application of HSI [13]. In any sorting scenario, it
is not always possible to present distinct samples to the imag-
ing system. Real-world samples are often multi-labelled in
nature, where the samples are overlapping each other. Multi-
label classification methods hence are proposed to solve such
problems with either problem transformation or algorithm
adaptation techniques [14]. Problem transformation meth-
ods convert the problem into other learning scenarios such
as Binary Relevance or Label Powerset. Algorithm adapta-
tion methods use the multi-label data directly. The algorithm
adaptation methods suffer from label concurrence and often
encounter imbalanced label sets [15]. Ensemble methods [16]
are effective as a problem transformation method, where each
network is trained with a random k-label set treating each
as a single label task. However, they are computationally
complex and model selection criterion is not well defined.
Label-specific features [17] have been studied to learn dis-
criminative features for each label. One of the systematic
errors in large deep learning datasets is where the samples are
labeled as single-labeled but are multi-labeled in nature [18].
Iterated learning frameworks [19] have been widely studied
to tackle this labeling bias, however, it suffers from higher
training periods. Re-labeling strategies [18] offer a more
cleaner solution. The main consideration in these algorithms
is the additional cost and the training duration.

HSI datasets are usually small in size, sometimes contain-
ing few to even only one HS image. Thus, deep learning al-
gorithms satisfy their need for large datasets using data aug-
mentation strategies, such as those used in Pixel-block pair
[20] or using GANs for HSI [21]. With the above discussed
algorithmic limitations and considerations in existing litera-
ture, we propose a new bitfield encoding, through defining
single and overlapping classes directly using a vector of sin-
gle bits, thereby reducing the complexity of the learning al-

gorithm. In addition, we introduce a new dataset containing
overlapping as well as non-overlapping plastics, composed of
HS images of three primary plastics and their possible over-
lapping combinations. This dataset is acquired by capturing
the HS signature of plastic flakes randomly scattered over a
conveyor belt passing under the Specim FX17 camera1.

3. BITFIELD ENCODING FOR OVERLAPPED
PLASTIC SEGMENTATION

Commonly, image segmentation requires a label for each
pixel of the image. To use this approach for plastic HSI, the
label must include classes for overlaps of plastics for further
recognition of them. A limitation with this approach is that
the number of classes for the combination of polymers grows
exponentially as the number of primary polymers increases.
In the same way, obtaining enough data for balanced analysis
of overlapped polymers with regards to the primary polymers
is also non viable. Given the HS signature of each plastic
individually, we aim to answer if it is possible to recognize
when two or more classes (polymers) are overlapping, given
only the non-overlapping classes (polymers) when training
the models.

We propose an intuitive approach to this problem, namely
bitfield encoding: instead of labeling each pixel with a single
class, we propose to label each pixel with a bitfield vector,
where every bit corresponds to one primary polymer. Note
that a vector of three bits provides eight different combina-
tions. With this encoding, pixels corresponding to the over-
lap of two or more polymers can be annotated with activating
in the vector, all the bits corresponding to each of the over-
lapping polymers. This approach enables to implicitly pass
the knowledge that some classes (the overlapped pixels) are a
combination of primary ones.

In this work, we propose to use bitfield encoding with
U-net [6] segmentation framework. For HSI analysis in this
study, we adapted the original U-net structure to accept in-
put size H × W × 224 HS data. At the output level, Mean
Squared Error (MSE) is used as loss function together with
Hyperbolic Tangent (TanH) as activation function. TanH be-
ing 0-centered, leads to the faint classes being more likely to
appear at the output after thresholding. The shape at the out-
put is H ×W × K, where K (in our case, equal to 3) is the
number of primary classes, also representing the size of the
bitfield vector. A threshold parameter is set to select the bits
with the highest probability. An example of a prediction us-
ing bitfield encoding is given in Fig. 1. In the figure, note that
the prediction can have values in between [−1, 1], given the
TanH activation function.

The adapted U-net output for each primary class is given
for the scenarios when a single flake or overlapping of them
is scanned. After thresholding at 0.5, in the single flake sce-

1https://www.specim.fi/products/specim-fx17/



Fig. 2. Left: RGB representation of the original HS image
with the total number of four blobs. Each slice of an original
image is divided into testing, training and validation subsets
from left to right. Each color represents a different label for
the blob, including a blob of overlapping plastics.

nario, only one bit corresponding to the predicted plastic is
activated. In the case of overlapping plastics, we achieve the
bitfield encoding representing the overlap of plastics 1 and 2,
as both these bits have scored over 0.5.

4. EXPERIMENTS AND RESULTS

4.1. HS Overlaps Dataset

The HS Overlaps Dataset (HSOD) contains 18 images, each
containing blobs of plastics from three different types, with
and without overlap. The original images have a resolution of
996 × 640 × 224, where the first two dimensions indicate the
spatial resolution and 224 is the spectral resolution. The seg-
mentation masks are automatically annotated using a combi-
nation of blob detection and morphological operations, intro-
ducing slight imprecision in the overlapping areas2. HSOD
contains the following classes: background, three primary
plastics (PP, PE, PET) and their four possible combinations
(PP+PE, PP+PET, PE+PET, PP+PE+PET), resulting in eight
possible classes.

Due to the sparsity of the available HS data in public
datasets, (random) pixel selection from a single HS image to
define training and evaluation subsets is a common practice
[22]. In the same line, to account for the class imbalance in
HSOD (see the left-most column in Table 1), we opted for ver-
tically dividing each original image by first removing margins
from the background and then slicing the image into three
equal parts of size 876 × 128 × 244. Each part is further
used for either train, validation or test purposes (see Fig. 2).

4.2. Experiments

We realized three experiments to incrementally demonstrate
the potentials of bitfield-encoding. For all the experiments

2The dataset and annotations will be publicly available with this paper.

the testing and validation sets are intact, while the training set
changes according to the experiment.

Fig. 3. From left to right: Ground Truth, Baseline, Baseline-
Bitfield, Bitfield.

Baseline: This experiment is designed to evaluate the per-
formance of the baseline U-net model without any modifi-
cation to the architecture: Cross-Entropy is used as the loss
function and Softmax as the final activation function. The
last layer contains eight neurons, one corresponding to each
class in the dataset. Quantitative results of this experiment are
given in Table 1-Baseline. In this experiment, we use the pri-
mary plastics as well as overlapped plastics data for training
the model.

Baseline-Bitfield: Does bitfield encoding enhance multi-
class segmentation problems? In this experiment, we still
use the primary and overlapped plastics data for training the
model. However, to observe the difference in performance
with regards to the Baseline, we modify the output layer to use
MSE-Loss, Hyperbolic tangent, and at the output with three
neurons. Quantitative results of this experiment are given in
Table 1-Baseline-Bitfield.

Bitfield: In this experiment, the objective is to define
the possibility of using bitfield encoding in classifying over-
lapped pixels when the model is only trained with primary
plastics. We use additional HS blobs of primary plastics
for training purposes (8 PP, 8 PE, 7 PET). The same output
architecture as Baseline-Bitfield experiment is used for this
experiment. Quantitative results of this experiment are given
in Table 1-Bitfield.

As can be seen in Table 1, the Bitfield experiment shows
poor performance compared to the Baseline and Baseline-
Bitfield. However, the recall from the Bitfield experiment
shows that the model is properly capable of detecting primary
classes. The rather poor performance of the Bitfield exper-



# Blobs Encoding Category Baseline Baseline-Bitfield Bitfield
F1 Precision Recall F1 Precision Recall F1 Precision Recall

- 000 Background 0.998 0.998 0.998 0.998 0.999 0.996 0.992 1 0.985
8 001 PP 0.982 0.972 0.992 0.979 0.961 0.997 0.553 0.388 0.964
8 010 PE 0.969 0.968 0.969 0.949 0.914 0.987 0.741 0.604 0.960
9 100 PET 0.942 0.898 0.990 0.963 0.939 0.989 0.430 0.390 0.481
2 011 PP+PE 0.961 0.940 0.984 0.976 0.967 0.985 0.088 0.686 0.047
3 101 PP+PET 0.923 0.986 0.868 0.940 0.982 0.902 0.340 0.278 0.447
3 110 PE+PET 0.825 0.745 0.924 0.817 0.703 0.977 0.421 0.294 0.741
3 111 PP+PE+PET 0.903 0.981 0.837 0.903 0.981 0.837 0.110 0.447 0.062

Average 0.938 0.936 0.945 0.941 0.958 0.930 0.425 0.481 0.549

Table 1. HSOD statistics as well as the results of different experiments with it.

iment with regards to the Baseline experiments can also be
seen in Fig. 3. We can observe that the Baseline and the
Baseline-Bitfield are almost identical to the ground truth. We
can also verify that the Bitfield experiment trained with only
primary classes predicts the primary polymer samples ideally,
but is not powerful in predicting combined polymer samples.
An interesting observation however is that the Bitfield model
although not capable of detecting the overlap of pixels, is able
to detect the correct plastics composing the overlap area (PE
and PET instead of PE+PET).

Fig. 4. T-SNE representations of two primary plastics and
their two-way overlapping order. The overlapping tends to
locate in between the primary classes. The two overlapping
representations are similar to each other, while separated from
the representation of their primary classes.

In Fig. 4, we show the T-SNE visualization of HS pixel
values of four different blobs of samples: PP, PET, and their
overlap in two ways, PP on top and PET on top. An inter-
esting observation is that in this visualization, the overlapped
classes appear in between the primary polymers and are fairly
separated from the primary classes. However, according to
this visualization, the order of the overlaps does not highly

matter for their recognition. It is still worth mentioning that in
this study we did not use any pre-processing method such as
spectral normalization. Such pre-processing steps can be used
in the future for smoothing possible over(under)-exposed
pixel values, to improve the classification performance.

5. CONCLUSIONS

In this paper, we introduced the bitfield encoding as an ap-
proach for multi-label classification problem where some of
the classes are overlapping of primary, single-label classes.
To demonstrate the effectiveness of this approach, we com-
pared its performance with a baseline, where the usual single-
label is used to train and evaluate the models and showed that
the bitfield encoding outperforms the traditional approach.
Additionally, we showed the functionality of the bitfield en-
coding for prediction of class combinations (overlapped plas-
tics) when the model is only trained with single classes (pri-
mary plastics). The latter is important as wider range of ap-
plications such as multiple label generation for datasets [23]
can benefit from it.
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