toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ChuanMing Fang; Kai Wang; Joost Van de Weijer edit   pdf
url  openurl
  Title IterInv: Iterative Inversion for Pixel-Level T2I Models Type Conference Article
  Year 2023 Publication 37th Annual Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Large-scale text-to-image diffusion models have been a ground-breaking development in generating convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are relying on DDIM inversion as a common practice based on the Latent Diffusion Models (LDM). However, the large pretrained T2I models working on the latent space as LDM suffer from losing details due to the first compression stage with an autoencoder mechanism. Instead, another mainstream T2I pipeline working on the pixel level, such as Imagen and DeepFloyd-IF, avoids this problem. They are commonly composed of several stages, normally with a text-to-image stage followed by several super-resolution stages. In this case, the DDIM inversion is unable to find the initial noise to generate the original image given that the super-resolution diffusion models are not compatible with the DDIM technique. According to our experimental findings, iteratively concatenating the noisy image as the condition is the root of this problem. Based on this observation, we develop an iterative inversion (IterInv) technique for this stream of T2I models and verify IterInv with the open-source DeepFloyd-IF model. By combining our method IterInv with a popular image editing method, we prove the application prospects of IterInv. The code will be released at \url{this https URL}.  
  Address New Orleans; USA; December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP Approved no  
  Call Number (down) Admin @ si @ FWW2023 Serial 3936  
Permanent link to this record
 

 
Author Hao Fang; Ajian Liu; Jun Wan; Sergio Escalera; Hugo Jair Escalante; Zhen Lei edit  url
doi  openurl
  Title Surveillance Face Presentation Attack Detection Challenge Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 6360-6370  
  Keywords  
  Abstract Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, most of the studies lacked consideration of long-distance scenarios. Specifically, compared with FAS in traditional scenes such as phone unlocking, face payment, and self-service security inspection, FAS in long-distance such as station squares, parks, and self-service supermarkets are equally important, but it has not been sufficiently explored yet. In order to fill this gap in the FAS community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask). SuHiFiMask contains 10,195 videos from 101 subjects of different age groups, which are collected by 7 mainstream surveillance cameras. Based on this dataset and protocol-3 for evaluating the robustness of the algorithm under quality changes, we organized a face presentation attack detection challenge in surveillance scenarios. It attracted 180 teams for the development phase with a total of 37 teams qualifying for the final round. The organization team re-verified and re-ran the submitted code and used the results as the final ranking. In this paper, we present an overview of the challenge, including an introduction to the dataset used, the definition of the protocol, the evaluation metrics, and the announcement of the competition results. Finally, we present the top-ranked algorithms and the research ideas provided by the competition for attack detection in long-range surveillance scenarios.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HuPBA Approved no  
  Call Number (down) Admin @ si @ FLW2023 Serial 3917  
Permanent link to this record
 

 
Author Francesco Fabbri; Xianghang Liu; Jack R. McKenzie; Bartlomiej Twardowski; Tri Kurniawan Wijaya edit   pdf
url  openurl
  Title FedFNN: Faster Training Convergence Through Update Predictions in Federated Recommender Systems Type Miscellaneous
  Year 2023 Publication ARXIV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Federated Learning (FL) has emerged as a key approach for distributed machine learning, enhancing online personalization while ensuring user data privacy. Instead of sending private data to a central server as in traditional approaches, FL decentralizes computations: devices train locally and share updates with a global server. A primary challenge in this setting is achieving fast and accurate model training – vital for recommendation systems where delays can compromise user engagement. This paper introduces FedFNN, an algorithm that accelerates decentralized model training. In FL, only a subset of users are involved in each training epoch. FedFNN employs supervised learning to predict weight updates from unsampled users, using updates from the sampled set. Our evaluations, using real and synthetic data, show: 1. FedFNN achieves training speeds 5x faster than leading methods, maintaining or improving accuracy; 2. the algorithm's performance is consistent regardless of client cluster variations; 3. FedFNN outperforms other methods in scenarios with limited client availability, converging more quickly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number (down) Admin @ si @ FLM2023 Serial 3980  
Permanent link to this record
 

 
Author Wenwen Fu; Zhihong An; Wendong Huang; Haoran Sun; Wenjuan Gong; Jordi Gonzalez edit  url
openurl 
  Title A Spatio-Temporal Spotting Network with Sliding Windows for Micro-Expression Detection Type Journal Article
  Year 2023 Publication Electronics Abbreviated Journal ELEC  
  Volume 12 Issue 18 Pages 3947  
  Keywords micro-expression spotting; sliding window; key frame extraction  
  Abstract Micro-expressions reveal underlying emotions and are widely applied in political psychology, lie detection, law enforcement and medical care. Micro-expression spotting aims to detect the temporal locations of facial expressions from video sequences and is a crucial task in micro-expression recognition. In this study, the problem of micro-expression spotting is formulated as micro-expression classification per frame. We propose an effective spotting model with sliding windows called the spatio-temporal spotting network. The method involves a sliding window detection mechanism, combines the spatial features from the local key frames and the global temporal features and performs micro-expression spotting. The experiments are conducted on the CAS(ME)2 database and the SAMM Long Videos database, and the results demonstrate that the proposed method outperforms the state-of-the-art method by 30.58% for the CAS(ME)2 and 23.98% for the SAMM Long Videos according to overall F-scores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number (down) Admin @ si @ FAH2023 Serial 3864  
Permanent link to this record
 

 
Author Matthias Eisenmann; Annika Reinke; Vivienn Weru; Minu D. Tizabi; Fabian Isensee; Tim J. Adler; Sharib Ali; Vincent Andrearczyk; Marc Aubreville; Ujjwal Baid; Spyridon Bakas; Niranjan Balu; Sophia Bano; Jorge Bernal; Sebastian Bodenstedt; Alessandro Casella; Veronika Cheplygina; Marie Daum; Marleen de Bruijne edit   pdf
doi  openurl
  Title Why Is the Winner the Best? Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 19955-19966  
  Keywords  
  Abstract International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The “typical” lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes ISE Approved no  
  Call Number (down) Admin @ si @ ERW2023 Serial 3842  
Permanent link to this record
 

 
Author Marwa Dhiaf; Mohamed Ali Souibgui; Kai Wang; Yuyang Liu; Yousri Kessentini; Alicia Fornes; Ahmed Cheikh Rouhou edit   pdf
url  openurl
  Title CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised methods, which require a large amount of labeled data. However, these methods are unable to capture new knowledge in an incremental fashion, where data is presented to the model sequentially, which is closer to the realistic scenario. In this paper, we explore the potential of continual self-supervised learning to alleviate the catastrophic forgetting problem in handwritten text recognition, as an example of sequence recognition. Our method consists in adding intermediate layers called adapters for each task, and efficiently distilling knowledge from the previous model while learning the current task. Our proposed framework is efficient in both computation and memory complexity. To demonstrate its effectiveness, we evaluate our method by transferring the learned model to diverse text recognition downstream tasks, including Latin and non-Latin scripts. As far as we know, this is the first application of continual self-supervised learning for handwritten text recognition. We attain state-of-the-art performance on English, Italian and Russian scripts, whilst adding only a few parameters per task. The code and trained models will be publicly available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (down) Admin @ si @ DSW2023 Serial 3851  
Permanent link to this record
 

 
Author David Dueñas; Mostafa Kamal; Petia Radeva edit  openurl
  Title Efficient Deep Learning Ensemble for Skin Lesion Classification Type Conference Article
  Year 2023 Publication Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
  Volume Issue Pages 303-314  
  Keywords  
  Abstract Vision Transformers (ViTs) are deep learning techniques that have been gaining in popularity in recent years.
In this work, we study the performance of ViTs and Convolutional Neural Networks (CNNs) on skin lesions classification tasks, specifically melanoma diagnosis. We show that regardless of the performance of both architectures, an ensemble of them can improve their generalization. We also present an adaptation to the Gram-OOD* method (detecting Out-of-distribution (OOD) using Gram matrices) for skin lesion images. Moreover, the integration of super-convergence was critical to success in building models with strict computing and training time constraints. We evaluated our ensemble of ViTs and CNNs, demonstrating that generalization is enhanced by placing first in the 2019 and third in the 2020 ISIC Challenge Live Leaderboards
(available at https://challenge.isic-archive.com/leaderboards/live/).
 
  Address Lisboa; Portugal; February 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes MILAB Approved no  
  Call Number (down) Admin @ si @ DKR2023 Serial 3928  
Permanent link to this record
 

 
Author Reuben Dorent; Aaron Kujawa; Marina Ivory; Spyridon Bakas; Nikola Rieke; Samuel Joutard; Ben Glocker; Jorge Cardoso; Marc Modat; Kayhan Batmanghelich; Arseniy Belkov; Maria Baldeon Calisto; Jae Won Choi; Benoit M. Dawant; Hexin Dong; Sergio Escalera; Yubo Fan; Lasse Hansen; Mattias P. Heinrich; Smriti Joshi; Victoriya Kashtanova; Hyeon Gyu Kim; Satoshi Kondo; Christian N. Kruse; Susana K. Lai-Yuen; Hao Li; Han Liu; Buntheng Ly; Ipek Oguz; Hyungseob Shin; Boris Shirokikh; Zixian Su; Guotai Wang; Jianghao Wu; Yanwu Xu; Kai Yao; Li Zhang; Sebastien Ourselin, edit   pdf
url  doi
openurl 
  Title CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation Type Journal Article
  Year 2023 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 83 Issue Pages 102628  
  Keywords Domain Adaptation; Segmen tation; Vestibular Schwnannoma  
  Abstract Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice – VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice – VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number (down) Admin @ si @ DKI2023 Serial 3706  
Permanent link to this record
 

 
Author Marco Cotogni; Fei Yang; Claudio Cusano; Andrew Bagdanov; Joost Van de Weijer edit   pdf
url  openurl
  Title Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation Type Miscellaneous
  Year 2023 Publication ARXIV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number (down) Admin @ si @ CYC2023 Serial 3981  
Permanent link to this record
 

 
Author Marcos V Conde; Florin Vasluianu; Javier Vazquez; Radu Timofte edit   pdf
url  openurl
  Title Perceptual image enhancement for smartphone real-time applications Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1848-1858  
  Keywords  
  Abstract Recent advances in camera designs and imaging pipelines allow us to capture high-quality images using smartphones. However, due to the small size and lens limitations of the smartphone cameras, we commonly find artifacts or degradation in the processed images. The most common unpleasant effects are noise artifacts, diffraction artifacts, blur, and HDR overexposure. Deep learning methods for image restoration can successfully remove these artifacts. However, most approaches are not suitable for real-time applications on mobile devices due to their heavy computation and memory requirements. In this paper, we propose LPIENet, a lightweight network for perceptual image enhancement, with the focus on deploying it on smartphones. Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks. Moreover, to prove the efficiency and reliability of our approach, we deployed the model directly on commercial smartphones and evaluated its performance. Our model can process 2K resolution images under 1 second in mid-level commercial smartphones.  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes MACO; CIC Approved no  
  Call Number (down) Admin @ si @ CVV2023 Serial 3900  
Permanent link to this record
 

 
Author Mickael Cormier; Andreas Specker; Julio C. S. Jacques; Lucas Florin; Jurgen Metzler; Thomas B. Moeslund; Kamal Nasrollahi; Sergio Escalera; Jurgen Beyerer edit   pdf
url  doi
openurl 
  Title UPAR Challenge: Pedestrian Attribute Recognition and Attribute-based Person Retrieval – Dataset, Design, and Results Type Conference Article
  Year 2023 Publication 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 166-175  
  Keywords  
  Abstract In civilian video security monitoring, retrieving and tracking a person of interest often rely on witness testimony and their appearance description. Deployed systems rely on a large amount of annotated training data and are expected to show consistent performance in diverse areas and gen-eralize well between diverse settings w.r.t. different view-points, illumination, resolution, occlusions, and poses for indoor and outdoor scenes. However, for such generalization, the system would require a large amount of various an-notated data for training and evaluation. The WACV 2023 Pedestrian Attribute Recognition and Attributed-based Per-son Retrieval Challenge (UPAR-Challenge) aimed to spot-light the problem of domain gaps in a real-world surveil-lance context and highlight the challenges and limitations of existing methods. The UPAR dataset, composed of 40 important binary attributes over 12 attribute categories across four datasets, was extended with data captured from a low-flying UAV from the P-DESTRE dataset. To this aim, 0.6M additional annotations were manually labeled and vali-dated. Each track evaluated the robustness of the competing methods to domain shifts by training on limited data from a specific domain and evaluating using data from unseen do-mains. The challenge attracted 41 registered participants, but only one team managed to outperform the baseline on one track, emphasizing the task's difficulty. This work de-scribes the challenge design, the adopted dataset, obtained results, as well as future directions on the topic.  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACVW  
  Notes HUPBA Approved no  
  Call Number (down) Admin @ si @ CSJ2023 Serial 3902  
Permanent link to this record
 

 
Author Qingshan Chen; Zhenzhen Quan; Yujun Li; Chao Zhai; Mikhail Mozerov edit  url
doi  openurl
  Title An Unsupervised Domain Adaption Approach for Cross-Modality RGB-Infrared Person Re-Identification Type Journal Article
  Year 2023 Publication IEEE Sensors Journal Abbreviated Journal IEEE-SENS  
  Volume 23 Issue 24 Pages  
  Keywords Q. Chen, Z. Quan, Y. Li, C. Zhai and M. G. Mozerov  
  Abstract Dual-camera systems commonly employed in surveillance serve as the foundation for RGB-infrared (IR) cross-modality person re-identification (ReID). However, significant modality differences give rise to inferior performance compared to single-modality scenarios. Furthermore, most existing studies in this area rely on supervised training with meticulously labeled datasets. Labeling RGB-IR image pairs is more complex than labeling conventional image data, and deploying pretrained models on unlabeled datasets can lead to catastrophic performance degradation. In contrast to previous solutions that focus solely on cross-modality or domain adaptation issues, this article presents an end-to-end unsupervised domain adaptation (UDA) framework for the cross-modality person ReID, which can simultaneously address both of these challenges. This model employs source domain classes, target domain clusters, and unclustered instance samples for the training, maximizing the comprehensive use of the dataset. Moreover, it addresses the problem of mismatched clustering labels between the two modalities in the target domain by incorporating a label matching module that reassigns reliable clusters with labels, ensuring correspondence between different modality labels. We construct the loss function by incorporating distinctiveness loss and multiplicity loss, both of which are determined by the similarity of neighboring features in the predicted feature space and the difference between distant features. This approach enables efficient feature clustering and cluster class assignment to occur concurrently. Eight UDA cross-modality person ReID experiments are conducted on three real datasets and six synthetic datasets. The experimental results unequivocally demonstrate that the proposed model outperforms the existing state-of-the-art algorithms to a significant degree. Notably, in RegDB → RegDB_light, the Rank-1 accuracy exhibits a remarkable improvement of 8.24%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number (down) Admin @ si @ CQL2023 Serial 3884  
Permanent link to this record
 

 
Author Qingshan Chen; Zhenzhen Quan; Yifan Hu; Yujun Li; Zhi Liu; Mikhail Mozerov edit  url
openurl 
  Title MSIF: multi-spectrum image fusion method for cross-modality person re-identification Type Journal Article
  Year 2023 Publication International Journal of Machine Learning and Cybernetics Abbreviated Journal IJMLC  
  Volume Issue Pages  
  Keywords  
  Abstract Sketch-RGB cross-modality person re-identification (ReID) is a challenging task that aims to match a sketch portrait drawn by a professional artist with a full-body photo taken by surveillance equipment to deal with situations where the monitoring equipment is damaged at the accident scene. However, sketch portraits only provide highly abstract frontal body contour information and lack other important features such as color, pose, behavior, etc. The difference in saliency between the two modalities brings new challenges to cross-modality person ReID. To overcome this problem, this paper proposes a novel dual-stream model for cross-modality person ReID, which is able to mine modality-invariant features to reduce the discrepancy between sketch and camera images end-to-end. More specifically, we propose a multi-spectrum image fusion (MSIF) method, which aims to exploit the image appearance changes brought by multiple spectrums and guide the network to mine modality-invariant commonalities during training. It only processes the spectrum of the input images without adding additional calculations and model complexity, which can be easily integrated into other models. Moreover, we introduce a joint structure via a generalized mean pooling (GMP) layer and a self-attention (SA) mechanism to balance background and texture information and obtain the regional features with a large amount of information in the image. To further shrink the intra-class distance, a weighted regularized triplet (WRT) loss is developed without introducing additional hyperparameters. The model was first evaluated on the PKU Sketch ReID dataset, and extensive experimental results show that the Rank-1/mAP accuracy of our method is 87.00%/91.12%, reaching the current state-of-the-art performance. To further validate the effectiveness of our approach in handling cross-modality person ReID, we conducted experiments on two commonly used IR-RGB datasets (SYSU-MM01 and RegDB). The obtained results show that our method achieves competitive performance. These results confirm the ability of our method to effectively process images from different modalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number (down) Admin @ si @ CQH2023 Serial 3885  
Permanent link to this record
 

 
Author Mickael Coustaty; Alicia Fornes edit  url
openurl 
  Title Document Analysis and Recognition – ICDAR 2023 Workshops Type Book Whole
  Year 2023 Publication Document Analysis and Recognition – ICDAR 2023 Workshops Abbreviated Journal  
  Volume 14194 Issue 2 Pages  
  Keywords  
  Abstract  
  Address San Jose; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number (down) Admin @ si @ CoF2023 Serial 3852  
Permanent link to this record
 

 
Author Anthony Cioppa; Silvio Giancola; Vladimir Somers; Floriane Magera; Xin Zhou; Hassan Mkhallati; Adrien Deliège; Jan Held; Carlos Hinojosa; Amir M. Mansourian; Pierre Miralles; Olivier Barnich; Christophe De Vleeschouwer; Alexandre Alahi; Bernard Ghanem; Marc Van Droogenbroeck; Abdullah Kamal; Adrien Maglo; Albert Clapes; Amr Abdelaziz; Artur Xarles; Astrid Orcesi; Atom Scott; Bin Liu; Byoungkwon Lim; Chen Chen; Fabian Deuser; Feng Yan; Fufu Yu; Gal Shitrit; Guanshuo Wang; Gyusik Choi; Hankyul Kim; Hao Guo; Hasby Fahrudin; Hidenari Koguchi; Håkan Ardo; Ibrahim Salah; Ido Yerushalmy; Iftikar Muhammad; Ikuma Uchida; Ishay Beery; Jaonary Rabarisoa; Jeongae Lee; Jiajun Fu; Jianqin Yin; Jinghang Xu; Jongho Nang; Julien Denize; Junjie Li; Junpei Zhang; Juntae Kim; Kamil Synowiec; Kenji Kobayashi; Kexin Zhang; Konrad Habel; Kota Nakajima; Licheng Jiao; Lin Ma; Lizhi Wang; Luping Wang; Menglong Li; Mengying Zhou; Mohamed Nasr; Mohamed Abdelwahed; Mykola Liashuha; Nikolay Falaleev; Norbert Oswald; Qiong Jia; Quoc-Cuong Pham; Ran Song; Romain Herault; Rui Peng; Ruilong Chen; Ruixuan Liu; Ruslan Baikulov; Ryuto Fukushima; Sergio Escalera; Seungcheon Lee; Shimin Chen; Shouhong Ding; Taiga Someya; Thomas B. Moeslund; Tianjiao Li; Wei Shen; Wei Zhang; Wei Li; Wei Dai; Weixin Luo; Wending Zhao; Wenjie Zhang; Xinquan Yang; Yanbiao Ma; Yeeun Joo; Yingsen Zeng; Yiyang Gan; Yongqiang Zhu; Yujie Zhong; Zheng Ruan; Zhiheng Li; Zhijian Huang; Ziyu Meng edit   pdf
url  openurl
  Title SoccerNet 2023 Challenges Results Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on this https URL. Baselines and development kits can be found on this https URL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number (down) Admin @ si @ CGS2023 Serial 3991  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: