|   | 
Details
   web
Records
Author (down) Carlos Boned Riera; Oriol Ramos Terrades
Title Discriminative Neural Variational Model for Unbalanced Classification Tasks in Knowledge Graph Type Conference Article
Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2186-2191
Keywords Measurement; Couplings; Semantics; Ear; Benchmark testing; Data models; Pattern recognition
Abstract Nowadays the paradigm of link discovery problems has shown significant improvements on Knowledge Graphs. However, method performances are harmed by the unbalanced nature of this classification problem, since many methods are easily biased to not find proper links. In this paper we present a discriminative neural variational auto-encoder model, called DNVAE from now on, in which we have introduced latent variables to serve as embedding vectors. As a result, the learnt generative model approximate better the underlying distribution and, at the same time, it better differentiate the type of relations in the knowledge graph. We have evaluated this approach on benchmark knowledge graph and Census records. Results in this last data set are quite impressive since we reach the highest possible score in the evaluation metrics. However, further experiments are still needed to deeper evaluate the performance of the method in more challenging tasks.
Address Montreal; Quebec; Canada; August 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.121; 600.162 Approved no
Call Number Admin @ si @ BoR2022 Serial 3741
Permanent link to this record
 

 
Author (down) Carles Onielfa; Carles Casacuberta; Sergio Escalera
Title Influence in Social Networks Through Visual Analysis of Image Memes Type Conference Article
Year 2022 Publication Artificial Intelligence Research and Development Abbreviated Journal
Volume 356 Issue Pages 71-80
Keywords
Abstract Memes evolve and mutate through their diffusion in social media. They have the potential to propagate ideas and, by extension, products. Many studies have focused on memes, but none so far, to our knowledge, on the users that post them, their relationships, and the reach of their influence. In this article, we define a meme influence graph together with suitable metrics to visualize and quantify influence between users who post memes, and we also describe a process to implement our definitions using a new approach to meme detection based on text-to-image area ratio and contrast. After applying our method to a set of users of the social media platform Instagram, we conclude that our metrics add information to already existing user characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ OCE2022 Serial 3799
Permanent link to this record
 

 
Author (down) Bojana Gajic; Ariel Amato; Ramon Baldrich; Joost Van de Weijer; Carlo Gatta
Title Area Under the ROC Curve Maximization for Metric Learning Type Conference Article
Year 2022 Publication CVPR 2022 Workshop on Efficien Deep Learning for Computer Vision (ECV 2022, 5th Edition) Abbreviated Journal
Volume Issue Pages
Keywords Training; Computer vision; Conferences; Area measurement; Benchmark testing; Pattern recognition
Abstract Most popular metric learning losses have no direct relation with the evaluation metrics that are subsequently applied to evaluate their performance. We hypothesize that training a metric learning model by maximizing the area under the ROC curve (which is a typical performance measure of recognition systems) can induce an implicit ranking suitable for retrieval problems. This hypothesis is supported by previous work that proved that a curve dominates in ROC space if and only if it dominates in Precision-Recall space. To test this hypothesis, we design and maximize an approximated, derivable relaxation of the area under the ROC curve. The proposed AUC loss achieves state-of-the-art results on two large scale retrieval benchmark datasets (Stanford Online Products and DeepFashion In-Shop). Moreover, the AUC loss achieves comparable performance to more complex, domain specific, state-of-the-art methods for vehicle re-identification.
Address New Orleans, USA; 20 June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes CIC; LAMP; Approved no
Call Number Admin @ si @ GAB2022 Serial 3700
Permanent link to this record
 

 
Author (down) Bhalaji Nagarajan; Ricardo Marques; Marcos Mejia; Petia Radeva
Title Class-conditional Importance Weighting for Deep Learning with Noisy Labels Type Conference Article
Year 2022 Publication 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume 5 Issue Pages 679-686
Keywords Noisy Labeling; Loss Correction; Class-conditional Importance Weighting; Learning with Noisy Labels
Abstract Large-scale accurate labels are very important to the Deep Neural Networks to train them and assure high performance. However, it is very expensive to create a clean dataset since usually it relies on human interaction. To this purpose, the labelling process is made cheap with a trade-off of having noisy labels. Learning with Noisy Labels is an active area of research being at the same time very challenging. The recent advances in Self-supervised learning and robust loss functions have helped in advancing noisy label research. In this paper, we propose a loss correction method that relies on dynamic weights computed based on the model training. We extend the existing Contrast to Divide algorithm coupled with DivideMix using a new class-conditional weighted scheme. We validate the method using the standard noise experiments and achieved encouraging results.
Address Virtual; February 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ NMM2022 Serial 3798
Permanent link to this record
 

 
Author (down) Ayan Banerjee; Palaiahnakote Shivakumara; Parikshit Acharya; Umapada Pal; Josep Llados
Title TWD: A New Deep E2E Model for Text Watermark Detection in Video Images Type Conference Article
Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords Deep learning; U-Net; FCENet; Scene text detection; Video text detection; Watermark text detection
Abstract Text watermark detection in video images is challenging because text watermark characteristics are different from caption and scene texts in the video images. Developing a successful model for detecting text watermark, caption, and scene texts is an open challenge. This study aims at developing a new Deep End-to-End model for Text Watermark Detection (TWD), caption and scene text in video images. To standardize non-uniform contrast, quality, and resolution, we explore the U-Net3+ model for enhancing poor quality text without affecting high-quality text. Similarly, to address the challenges of arbitrary orientation, text shapes and complex background, we explore Stacked Hourglass Encoded Fourier Contour Embedding Network (SFCENet) by feeding the output of the U-Net3+ model as input. Furthermore, the proposed work integrates enhancement and detection models as an end-to-end model for detecting multi-type text in video images. To validate the proposed model, we create our own dataset (named TW-866), which provides video images containing text watermark, caption (subtitles), as well as scene text. The proposed model is also evaluated on standard natural scene text detection datasets, namely, ICDAR 2019 MLT, CTW1500, Total-Text, and DAST1500. The results show that the proposed method outperforms the existing methods. This is the first work on text watermark detection in video images to the best of our knowledge
Address Montreal; Quebec; Canada; August 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; Approved no
Call Number Admin @ si @ BSA2022 Serial 3788
Permanent link to this record
 

 
Author (down) Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil
Title Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals Type Journal Article
Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI
Volume 12 Issue 5 Pages 2298
Keywords Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion
Abstract The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.
Address February 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; ADAS; 600.139; 600.145; 600.118 Approved no
Call Number Admin @ si @ HYF2022 Serial 3720
Permanent link to this record
 

 
Author (down) Asma Bensalah; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados
Title Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis Type Conference Article
Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal
Volume 13424 Issue Pages 336-348
Keywords Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk
Abstract Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.
Address June 7-9, 2022, Las Palmas de Gran Canaria, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IGS
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ BFC2022 Serial 3738
Permanent link to this record
 

 
Author (down) Arya Farkhondeh; Cristina Palmero; Simone Scardapane; Sergio Escalera
Title Towards Self-Supervised Gaze Estimation Type Miscellaneous
Year 2022 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Recent joint embedding-based self-supervised methods have surpassed standard supervised approaches on various image recognition tasks such as image classification. These self-supervised methods aim at maximizing agreement between features extracted from two differently transformed views of the same image, which results in learning an invariant representation with respect to appearance and geometric image transformations. However, the effectiveness of these approaches remains unclear in the context of gaze estimation, a structured regression task that requires equivariance under geometric transformations (e.g., rotations, horizontal flip). In this work, we propose SwAT, an equivariant version of the online clustering-based self-supervised approach SwAV, to learn more informative representations for gaze estimation. We demonstrate that SwAT, with ResNet-50 and supported with uncurated unlabeled face images, outperforms state-of-the-art gaze estimation methods and supervised baselines in various experiments. In particular, we achieve up to 57% and 25% improvements in cross-dataset and within-dataset evaluation tasks on existing benchmarks (ETH-XGaze, Gaze360, and MPIIFaceGaze).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ FPS2022 Serial 3822
Permanent link to this record
 

 
Author (down) Arnau Baro; Pau Riba; Alicia Fornes
Title Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network Type Conference Article
Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal
Volume 13639 Issue Pages 171-184
Keywords Object detection; Optical music recognition; Graph neural network
Abstract During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results.
Address December 04 – 07, 2022; Hyderabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICFHR
Notes DAG; 600.162; 600.140; 602.230 Approved no
Call Number Admin @ si @ BRF2022b Serial 3740
Permanent link to this record
 

 
Author (down) Arnau Baro; Carles Badal; Pau Torras; Alicia Fornes
Title Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism Type Conference Article
Year 2022 Publication 3rd International Workshop on Reading Music Systems (WoRMS2021) Abbreviated Journal
Volume Issue Pages 55-59
Keywords Optical Music Recognition; Digits; Image Classification
Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.
Address July 23, 2021, Alicante (Spain)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WoRMS
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ BBT2022 Serial 3734
Permanent link to this record
 

 
Author (down) Arnau Baro
Title Reading Music Systems: From Deep Optical Music Recognition to Contextual Methods Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The transcription of sheet music into some machine-readable format can be carried out manually. However, the complexity of music notation inevitably leads to burdensome software for music score editing, which makes the whole process
very time-consuming and prone to errors. Consequently, automatic transcription
systems for musical documents represent interesting tools.
Document analysis is the subject that deals with the extraction and processing
of documents through image and pattern recognition. It is a branch of computer
vision. Taking music scores as source, the field devoted to address this task is
known as Optical Music Recognition (OMR). Typically, an OMR system takes an
image of a music score and automatically extracts its content into some symbolic
structure such as MEI or MusicXML.
In this dissertation, we have investigated different methods for recognizing a
single staff section (e.g. scores for violin, flute, etc.), much in the same way as most text recognition research focuses on recognizing words appearing in a given line image. These methods are based in two different methodologies. On the one hand, we present two methods based on Recurrent Neural Networks, in particular, the
Long Short-Term Memory Neural Network. On the other hand, a method based on Sequence to Sequence models is detailed.
Music context is needed to improve the OMR results, just like language models
and dictionaries help in handwriting recognition. For example, syntactical rules
and grammars could be easily defined to cope with the ambiguities in the rhythm.
In music theory, for example, the time signature defines the amount of beats per
bar unit. Thus, in the second part of this dissertation, different methodologies
have been investigated to improve the OMR recognition. We have explored three
different methods: (a) a graphic tree-structure representation, Dendrograms, that
joins, at each level, its primitives following a set of rules, (b) the incorporation of Language Models to model the probability of a sequence of tokens, and (c) graph neural networks to analyze the music scores to avoid meaningless relationships between music primitives.
Finally, to train all these methodologies, and given the method-specificity of
the datasets in the literature, we have created four different music datasets. Two of them are synthetic with a modern or old handwritten appearance, whereas the
other two are real handwritten scores, being one of them modern and the other
old.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Alicia Fornes
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-8-6 Medium
Area Expedition Conference
Notes DAG; Approved no
Call Number Admin @ si @ Bar2022 Serial 3754
Permanent link to this record
 

 
Author (down) Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil
Title EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results Type Journal Article
Year 2022 Publication Journal of Thoracic Oncology Abbreviated Journal JTO
Volume 17 Issue 9 Pages S182
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ RBG2022b Serial 3834
Permanent link to this record
 

 
Author (down) Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil
Title Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. Type Journal Article
Year 2022 Publication European Respiratory Journal Abbreviated Journal ERJ
Volume 60 Issue 66 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ RBG2022c Serial 3835
Permanent link to this record
 

 
Author (down) Angel Sappa; Patricia Suarez; Henry Velesaca; Dario Carpio
Title Domain Adaptation in Image Dehazing: Exploring the Usage of Images from Virtual Scenarios Type Conference Article
Year 2022 Publication 16th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing Abbreviated Journal
Volume Issue Pages 85-92
Keywords Domain adaptation; Synthetic hazed dataset; Dehazing
Abstract This work presents a novel domain adaptation strategy for deep learning-based approaches to solve the image dehazing
problem. Firstly, a large set of synthetic images is generated by using a realistic 3D graphic simulator; these synthetic
images contain different densities of haze, which are used for training the model that is later adapted to any real scenario.
The adaptation process requires just a few images to fine-tune the model parameters. The proposed strategy allows
overcoming the limitation of training a given model with few images. In other words, the proposed strategy implements
the adaptation of a haze removal model trained with synthetic images to real scenarios. It should be noticed that it is quite
difficult, if not impossible, to have large sets of pairs of real-world images (with and without haze) to train in a supervised
way dehazing algorithms. Experimental results are provided showing the validity of the proposed domain adaptation
strategy.
Address Lisboa; Portugal; July 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CGVCVIP
Notes MSIAU; no proj Approved no
Call Number Admin @ si @ SSV2022 Serial 3804
Permanent link to this record
 

 
Author (down) Angel Sappa (ed)
Title ICT Applications for Smart Cities Type Book Whole
Year 2022 Publication ICT Applications for Smart Cities Abbreviated Journal
Volume 224 Issue Pages
Keywords Computational Intelligence; Intelligent Systems; Smart Cities; ICT Applications; Machine Learning; Pattern Recognition; Computer Vision; Image Processing
Abstract Part of the book series: Intelligent Systems Reference Library (ISRL)

This book is the result of four-year work in the framework of the Ibero-American Research Network TICs4CI funded by the CYTED program. In the following decades, 85% of the world's population is expected to live in cities; hence, urban centers should be prepared to provide smart solutions for problems ranging from video surveillance and intelligent mobility to the solid waste recycling processes, just to mention a few. More specifically, the book describes underlying technologies and practical implementations of several successful case studies of ICTs developed in the following smart city areas:

• Urban environment monitoring
• Intelligent mobility
• Waste recycling processes
• Video surveillance
• Computer-aided diagnose in healthcare systems
• Computer vision-based approaches for efficiency in production processes

The book is intended for researchers and engineers in the field of ICTs for smart cities, as well as to anyone who wants to know about state-of-the-art approaches and challenges on this field.
Address September 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title ISRL
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-06306-0 Medium
Area Expedition Conference
Notes MSIAU; MACO Approved no
Call Number Admin @ si @ Sap2022 Serial 3812
Permanent link to this record