toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Albert Ali Salah; E. Pauwels; R. Tavenard; Theo Gevers edit  doi
openurl 
  Title T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data Type Journal Article
  Year 2010 Publication Sensors Abbreviated Journal SENS  
  Volume 10 Issue 8 Pages 7496-7513  
  Keywords sensor networks; temporal pattern extraction; T-patterns; Lempel-Ziv; Gaussian mixture model; MERL motion data  
  Abstract The trend to use large amounts of simple sensors as opposed to a few complex sensors to monitor places and systems creates a need for temporal pattern mining algorithms to work on such data. The methods that try to discover re-usable and interpretable patterns in temporal event data have several shortcomings. We contrast several recent approaches to the problem, and extend the T-Pattern algorithm, which was previously applied for detection of sequential patterns in behavioural sciences. The temporal complexity of the T-pattern approach is prohibitive in the scenarios we consider. We remedy this with a statistical model to obtain a fast and robust algorithm to find patterns in temporal data. We test our algorithm on a recent database collected with passive infrared sensors with millions of events.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ SPT2010 Serial 1845  
Permanent link to this record
 

 
Author (up) Alejandro Gonzalez Alzate; Zhijie Fang; Yainuvis Socarras; Joan Serrat; David Vazquez; Jiaolong Xu; Antonio Lopez edit   pdf
doi  openurl
  Title Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison Type Journal Article
  Year 2016 Publication Sensors Abbreviated Journal SENS  
  Volume 16 Issue 6 Pages 820  
  Keywords Pedestrian Detection; FIR  
  Abstract Despite all the significant advances in pedestrian detection brought by computer vision for driving assistance, it is still a challenging problem. One reason is the extremely varying lighting conditions under which such a detector should operate, namely day and night time. Recent research has shown that the combination of visible and non-visible imaging modalities may increase detection accuracy, where the infrared spectrum plays a critical role. The goal of this paper is to assess the accuracy gain of different pedestrian models (holistic, part-based, patch-based) when training with images in the far infrared spectrum. Specifically, we want to compare detection accuracy on test images recorded at day and nighttime if trained (and tested) using (a) plain color images, (b) just infrared images and (c) both of them. In order to obtain results for the last item we propose an early fusion approach to combine features from both modalities. We base the evaluation on a new dataset we have built for this purpose as well as on the publicly available KAIST multispectral dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.076; 600.082; 601.281 Approved no  
  Call Number ADAS @ adas @ GFS2016 Serial 2754  
Permanent link to this record
 

 
Author (up) Angel Morera; Angel Sanchez; A. Belen Moreno; Angel Sappa; Jose F. Velez edit   pdf
url  openurl
  Title SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities Type Journal Article
  Year 2020 Publication Sensors Abbreviated Journal SENS  
  Volume 20 Issue 16 Pages 4587  
  Keywords  
  Abstract This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) deep neural networks for the outdoor advertisement panel detection problem by handling multiple and combined variabilities in the scenes. Publicity panel detection in images offers important advantages both in the real world as well as in the virtual one. For example, applications like Google Street View can be used for Internet publicity and when detecting these ads panels in images, it could be possible to replace the publicity appearing inside the panels by another from a funding company. In our experiments, both SSD and YOLO detectors have produced acceptable results under variable sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex background and multiple panels in scenes. Due to the difficulty of finding annotated images for the considered problem, we created our own dataset for conducting the experiments. The major strength of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable when the publicity contained inside the panel is analyzed after detecting them. On the other side, YOLO produced better panel localization results detecting a higher number of True Positive (TP) panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models with different types of semantic segmentation networks and using the same evaluation metrics is also included.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.130; 601.349; 600.122 Approved no  
  Call Number Admin @ si @ MSM2020 Serial 3452  
Permanent link to this record
 

 
Author (up) Angel Sappa; P. Carvajal; Cristhian A. Aguilera-Carrasco; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla edit   pdf
doi  openurl
  Title Wavelet based visible and infrared image fusion: a comparative study Type Journal Article
  Year 2016 Publication Sensors Abbreviated Journal SENS  
  Volume 16 Issue 6 Pages 1-15  
  Keywords Image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform  
  Abstract This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086; 600.076 Approved no  
  Call Number Admin @ si @SCA2016 Serial 2807  
Permanent link to this record
 

 
Author (up) Antonio Hernandez; Miguel Reyes; Victor Ponce; Sergio Escalera edit   pdf
doi  openurl
  Title GrabCut-Based Human Segmentation in Video Sequences Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 11 Pages 15376-15393  
  Keywords segmentation; human pose recovery; GrabCut; GraphCut; Active Appearance Models; Conditional Random Field  
  Abstract In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and pose recovery is obtained by combining human segmentation with Active Appearance Models and Conditional Random Fields. Results over public datasets and in a new Human Limb dataset show a robust segmentation and recovery of both face and pose using the presented methodology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ HRP2012 Serial 2147  
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Daniel Alvarez; Debora Gil edit  url
openurl 
  Title EEG Dataset Collection for Mental Workload Predictions in Flight-Deck Environment Type Journal Article
  Year 2024 Publication Sensors Abbreviated Journal SENS  
  Volume 24 Issue 4 Pages 1174  
  Keywords  
  Abstract High mental workload reduces human performance and the ability to correctly carry out complex tasks. In particular, aircraft pilots enduring high mental workloads are at high risk of failure, even with catastrophic outcomes. Despite progress, there is still a lack of knowledge about the interrelationship between mental workload and brain functionality, and there is still limited data on flight-deck scenarios. Although recent emerging deep-learning (DL) methods using physiological data have presented new ways to find new physiological markers to detect and assess cognitive states, they demand large amounts of properly annotated datasets to achieve good performance. We present a new dataset of electroencephalogram (EEG) recordings specifically collected for the recognition of different levels of mental workload. The data were recorded from three experiments, where participants were induced to different levels of workload through tasks of increasing cognition demand. The first involved playing the N-back test, which combines memory recall with arithmetical skills. The second was playing Heat-the-Chair, a serious game specifically designed to emphasize and monitor subjects under controlled concurrent tasks. The third was flying in an Airbus320 simulator and solving several critical situations. The design of the dataset has been validated on three different levels: (1) correlation of the theoretical difficulty of each scenario to the self-perceived difficulty and performance of subjects; (2) significant difference in EEG temporal patterns across the theoretical difficulties and (3) usefulness for the training and evaluation of AI models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ HYF2024 Serial 4019  
Permanent link to this record
 

 
Author (up) Cesar Isaza; Joaquin Salas; Bogdan Raducanu edit  doi
openurl 
  Title Evaluation of Intrinsic Image Algorithms to Detect the Shadows Cast by Static Objects Outdoors Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 10 Pages 13333-13348  
  Keywords  
  Abstract In some automatic scene analysis applications, the presence of shadows becomes a nuisance that is necessary to deal with. As a consequence, a preliminary stage in many computer vision algorithms is to attenuate their effect. In this paper, we focus our attention on the detection of shadows cast by static objects outdoors, as the scene is viewed for extended periods of time (days, weeks) from a fixed camera and considering daylight intervals where the main source of light is the sun. In this context, we report two contributions. First, we introduce the use of synthetic images for which ground truth can be generated automatically, avoiding the tedious effort of manual annotation. Secondly, we report a novel application of the intrinsic image concept to the automatic detection of shadows cast by static objects in outdoors. We make both a quantitative and a qualitative evaluation of several algorithms based on this image representation. For the quantitative evaluation, we used the synthetic data set, while for the qualitative evaluation we used both data sets. Our experimental results show that the evaluated methods can partially solve the problem of shadow detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number Admin @ si @ ISR2012b Serial 2173  
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera-Carrasco; Angel Sappa; Cristhian Aguilera; Ricardo Toledo edit   pdf
doi  openurl
  Title Cross-Spectral Local Descriptors via Quadruplet Network Type Journal Article
  Year 2017 Publication Sensors Abbreviated Journal SENS  
  Volume 17 Issue 4 Pages 873  
  Keywords  
  Abstract This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where, for each matching pair, there are always two possible non-matching patches: one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086; 600.118 Approved no  
  Call Number Admin @ si @ ASA2017 Serial 2914  
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera-Carrasco; C. Aguilera; Angel Sappa edit   pdf
doi  openurl
  Title Melamine Faced Panels Defect Classification beyond the Visible Spectrum Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal SENS  
  Volume 18 Issue 11 Pages 1-10  
  Keywords industrial application; infrared; machine learning  
  Abstract In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ AAS2018 Serial 3191  
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera-Carrasco; Cristhian Aguilera; Cristobal A. Navarro; Angel Sappa edit   pdf
url  doi
openurl 
  Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
  Year 2020 Publication Sensors Abbreviated Journal SENS  
  Volume 20 Issue 11 Pages 3249  
  Keywords stereo matching; deep learning; embedded GPU  
  Abstract Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5–32 ms, for 1216 × 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ AAN2020 Serial 3428  
Permanent link to this record
 

 
Author (up) Cristhian Aguilera; Fernando Barrera; Felipe Lumbreras; Angel Sappa; Ricardo Toledo edit   pdf
doi  openurl
  Title Multispectral Image Feature Points Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 9 Pages 12661-12672  
  Keywords multispectral image descriptor; color and infrared images; feature point descriptor  
  Abstract Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH) descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ ABL2012 Serial 2154  
Permanent link to this record
 

 
Author (up) Gabriel Villalonga; Joost Van de Weijer; Antonio Lopez edit  url
doi  openurl
  Title Recognizing new classes with synthetic data in the loop: application to traffic sign recognition Type Journal Article
  Year 2020 Publication Sensors Abbreviated Journal SENS  
  Volume 20 Issue 3 Pages 583  
  Keywords  
  Abstract On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio∼ 1/4 for new/known classes; even for more challenging ratios such as∼ 4/1, the results are also very positive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ADAS; 600.118; 600.120 Approved no  
  Call Number Admin @ si @ VWL2020 Serial 3405  
Permanent link to this record
 

 
Author (up) Idoia Ruiz; Joan Serrat edit  doi
openurl 
  Title Hierarchical Novelty Detection for Traffic Sign Recognition Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue 12 Pages 4389  
  Keywords Novelty detection; hierarchical classification; deep learning; traffic sign recognition; autonomous driving; computer vision  
  Abstract Recent works have made significant progress in novelty detection, i.e., the problem of detecting samples of novel classes, never seen during training, while classifying those that belong to known classes. However, the only information this task provides about novel samples is that they are unknown. In this work, we leverage hierarchical taxonomies of classes to provide informative outputs for samples of novel classes. We predict their closest class in the taxonomy, i.e., its parent class. We address this problem, known as hierarchical novelty detection, by proposing a novel loss, namely Hierarchical Cosine Loss that is designed to learn class prototypes along with an embedding of discriminative features consistent with the taxonomy. We apply it to traffic sign recognition, where we predict the parent class semantics for new types of traffic signs. Our model beats state-of-the art approaches on two large scale traffic sign benchmarks, Mapillary Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K), and performs similarly on natural images benchmarks (AWA2, CUB). For TT100K and MTSD, our approach is able to detect novel samples at the correct nodes of the hierarchy with 81% and 36% of accuracy, respectively, at 80% known class accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.154 Approved no  
  Call Number Admin @ si @ RuS2022 Serial 3684  
Permanent link to this record
 

 
Author (up) Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez edit   pdf
url  openurl
  Title Co-Training for Deep Object Detection: Comparing Single-Modal and Multi-Modal Approaches Type Journal Article
  Year 2021 Publication Sensors Abbreviated Journal SENS  
  Volume 21 Issue 9 Pages 3185  
  Keywords co-training; multi-modality; vision-based object detection; ADAS; self-driving  
  Abstract Top-performing computer vision models are powered by convolutional neural networks (CNNs). Training an accurate CNN highly depends on both the raw sensor data and their associated ground truth (GT). Collecting such GT is usually done through human labeling, which is time-consuming and does not scale as we wish. This data-labeling bottleneck may be intensified due to domain shifts among image sensors, which could force per-sensor data labeling. In this paper, we focus on the use of co-training, a semi-supervised learning (SSL) method, for obtaining self-labeled object bounding boxes (BBs), i.e., the GT to train deep object detectors. In particular, we assess the goodness of multi-modal co-training by relying on two different views of an image, namely, appearance (RGB) and estimated depth (D). Moreover, we compare appearance-based single-modal co-training with multi-modal. Our results suggest that in a standard SSL setting (no domain shift, a few human-labeled data) and under virtual-to-real domain shift (many virtual-world labeled data, no human-labeled data) multi-modal co-training outperforms single-modal. In the latter case, by performing GAN-based domain translation both co-training modalities are on par, at least when using an off-the-shelf depth estimation model not specifically trained on the translated images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ GVL2021 Serial 3562  
Permanent link to this record
 

 
Author (up) Mark Philip Philipsen; Jacob Velling Dueholm; Anders Jorgensen; Sergio Escalera; Thomas B. Moeslund edit  doi
openurl 
  Title Organ Segmentation in Poultry Viscera Using RGB-D Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal SENS  
  Volume 18 Issue 1 Pages 117  
  Keywords semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN  
  Abstract We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ PVJ2018 Serial 3072  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: