toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Sergio Escalera; Ralf Herbrich edit  url
doi  isbn
openurl 
  Title The NeurIPS’18 Competition: From Machine Learning to Intelligent Conversations Type Book Whole
  Year 2020 Publication The Springer Series on Challenges in Machine Learning Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This volume presents the results of the Neural Information Processing Systems Competition track at the 2018 NeurIPS conference. The competition follows the same format as the 2017 competition track for NIPS. Out of 21 submitted proposals, eight competition proposals were selected, spanning the area of Robotics, Health, Computer Vision, Natural Language Processing, Systems and Physics. Competitions have become an integral part of advancing state-of-the-art in artificial intelligence (AI). They exhibit one important difference to benchmarks: Competitions test a system end-to-end rather than evaluating only a single component; they assess the practicability of an algorithmic solution in addition to assessing feasibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Sergio Escalera; Ralf Hebrick  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1328 ISBN 978-3-030-29134-1 Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ HeE2020 Serial 3328  
Permanent link to this record
 

 
Author (up) Shifeng Zhang; Ajian Liu; Jun Wan; Yanyan Liang; Guogong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z. Li edit  url
doi  openurl
  Title CASIA-SURF: A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing Type Journal
  Year 2020 Publication IEEE Transactions on Biometrics, Behavior, and Identity Science Abbreviated Journal TTBIS  
  Volume 2 Issue 2 Pages 182 - 193  
  Keywords  
  Abstract Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing benchmarks have limited number of subjects (≤170) and modalities (≤2), which hinder the further development of the academic community. To facilitate face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing in terms of both subjects and modalities. Specifically, it consists of 1,000 subjects with 21,000 videos and each sample has 3 modalities ( i.e. , RGB, Depth and IR). We also provide comprehensive evaluation metrics, diverse evaluation protocols, training/validation/testing subsets and a measurement tool, developing a new benchmark for face anti-spoofing. Moreover, we present a novel multi-modal multi-scale fusion method as a strong baseline, which performs feature re-weighting to select the more informative channel features while suppressing the less useful ones for each modality across different scales. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability. The dataset is available at https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2019?authuser=0  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ ZLW2020 Serial 3412  
Permanent link to this record
 

 
Author (up) Shiqi Yang; Kai Wang; Luis Herranz; Joost Van de Weijer edit   pdf
openurl 
  Title Simple and effective localized attribute representations for zero-shot learning Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract arXiv:2006.05938
Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their semantic descriptions. Some recent papers have shown the importance of localized features together with fine-tuning the feature extractor to obtain discriminative and transferable features. However, these methods require complex attention or part detection modules to perform explicit localization in the visual space. In contrast, in this paper we propose localizing representations in the semantic/attribute space, with a simple but effective pipeline where localization is implicit. Focusing on attribute representations, we show that our method obtains state-of-the-art performance on CUB and SUN datasets, and also achieves competitive results on AWA2 dataset, outperforming generally more complex methods with explicit localization in the visual space. Our method can be implemented easily, which can be used as a new baseline for zero shot-learning. In addition, our localized representations are highly interpretable as attribute-specific heatmaps.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YWH2020 Serial 3542  
Permanent link to this record
 

 
Author (up) Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz edit   pdf
openurl 
  Title Unsupervised Domain Adaptation without Source Data by Casting a BAIT Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract arXiv:2010.12427
Unsupervised domain adaptation (UDA) aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. Existing UDA methods require access to source data during adaptation, which may not be feasible in some real-world applications. In this paper, we address the source-free unsupervised domain adaptation (SFUDA) problem, where only the source model is available during the adaptation. We propose a method named BAIT to address SFUDA. Specifically, given only the source model, with the source classifier head fixed, we introduce a new learnable classifier. When adapting to the target domain, class prototypes of the new added classifier will act as a bait. They will first approach the target features which deviate from prototypes of the source classifier due to domain shift. Then those target features are pulled towards the corresponding prototypes of the source classifier, thus achieving feature alignment with the source classifier in the absence of source data. Experimental results show that the proposed method achieves state-of-the-art performance on several benchmark datasets compared with existing UDA and SFUDA methods.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YWW2020 Serial 3539  
Permanent link to this record
 

 
Author (up) Soumick Chatterjee; Fatima Saad; Chompunuch Sarasaen; Suhita Ghosh; Rupali Khatun; Petia Radeva; Georg Rose; Sebastian Stober; Oliver Speck; Andreas Nürnberger edit   pdf
openurl 
  Title Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract CoRR abs/2006.02570
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosis of infected patients. Medical imaging such as X-ray and Computed Tomography (CT) combined with the potential of Artificial Intelligence (AI) plays an essential role in supporting the medical staff in the diagnosis process. Thereby, the use of five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their Ensemble have been used in this paper, to classify COVID-19, pneumoniæ and healthy subjects using Chest X-Ray. Multi-label classification was performed to predict multiple pathologies for each patient, if present. Foremost, the interpretability of each of the networks was thoroughly studied using techniques like occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT. The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the Ensemble of the network models. The qualitative results depicted the ResNets to be the most interpretable model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CSS2020 Serial 3534  
Permanent link to this record
 

 
Author (up) Sounak Dey edit  isbn
openurl 
  Title Mapping between Images and Conceptual Spaces: Sketch-based Image Retrieval Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This thesis presents several contributions to the literature of sketch based image retrieval (SBIR). In SBIR the first challenge we face is how to map two different domains to common space for effective retrieval of images, while tackling the different levels of abstraction people use to express their notion of objects around while sketching. To this extent we first propose a cross-modal learning framework that maps both sketches and text into a joint embedding space invariant to depictive style, while preserving semantics. Then we have also investigated different query types possible to encompass people's dilema in sketching certain world objects. For this we propose an approach for multi-modal image retrieval in multi-labelled images. A multi-modal deep network architecture is formulated to jointly model sketches and text as input query modalities into a common embedding space, which is then further aligned with the image feature space. This permits encoding the object-based features and its alignment with the query irrespective of the availability of the co-occurrence of different objects in the training set.

Finally, we explore the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognises two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended. We also in this dissertation pave the path to the future direction of research in this domain.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Umapada Pal  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-8-8 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Dey20 Serial 3480  
Permanent link to this record
 

 
Author (up) Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz edit   pdf
openurl 
  Title Gate-Shift Networks for Video Action Recognition Type Conference Article
  Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep 3D CNNs for video action recognition are designed to learn powerful representations in the joint spatio-temporal feature space. In practice however, because of the large number of parameters and computations involved, they may under-perform in the lack of sufficiently large datasets for training them at scale. In this paper we introduce spatial gating in spatial-temporal decomposition of 3D kernels. We implement this concept with Gate-Shift Module (GSM). GSM is lightweight and turns a 2D-CNN into a highly efficient spatio-temporal feature extractor. With GSM plugged in, a 2D-CNN learns to adaptively route features through time and combine them, at almost no additional parameters and computational overhead. We perform an extensive evaluation of the proposed module to study its effectiveness in video action recognition, achieving state-of-the-art results on Something Something-V1 and Diving48 datasets, and obtaining competitive results on EPIC-Kitchens with far less model complexity.  
  Address Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ SEL2020 Serial 3438  
Permanent link to this record
 

 
Author (up) Thomas B. Moeslund; Sergio Escalera; Gholamreza Anbarjafari; Kamal Nasrollahi; Jun Wan edit  url
openurl 
  Title Statistical Machine Learning for Human Behaviour Analysis Type Journal Article
  Year 2020 Publication Entropy Abbreviated Journal ENTROPY  
  Volume 25 Issue 5 Pages 530  
  Keywords action recognition; emotion recognition; privacy-aware  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ MEA2020 Serial 3441  
Permanent link to this record
 

 
Author (up) Tomas Sixta; Julio C. S. Jacques Junior; Pau Buch Cardona; Eduard Vazquez; Sergio Escalera edit   pdf
url  doi
openurl 
  Title FairFace Challenge at ECCV 2020: Analyzing Bias in Face Recognition Type Conference Article
  Year 2020 Publication ECCV Workshops Abbreviated Journal  
  Volume 12540 Issue Pages 463-481  
  Keywords  
  Abstract This work summarizes the 2020 ChaLearn Looking at People Fair Face Recognition and Analysis Challenge and provides a description of the top-winning solutions and analysis of the results. The aim of the challenge was to evaluate accuracy and bias in gender and skin colour of submitted algorithms on the task of 1:1 face verification in the presence of other confounding attributes. Participants were evaluated using an in-the-wild dataset based on reannotated IJB-C, further enriched 12.5K new images and additional labels. The dataset is not balanced, which simulates a real world scenario where AI-based models supposed to present fair outcomes are trained and evaluated on imbalanced data. The challenge attracted 151 participants, who made more 1.8K submissions in total. The final phase of the challenge attracted 36 active teams out of which 10 exceeded 0.999 AUC-ROC while achieving very low scores in the proposed bias metrics. Common strategies by the participants were face pre-processing, homogenization of data distributions, the use of bias aware loss functions and ensemble models. The analysis of top-10 teams shows higher false positive rates (and lower false negative rates) for females with dark skin tone as well as the potential of eyeglasses and young age to increase the false positive rates too.  
  Address Virtual; August 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ SJB2020 Serial 3499  
Permanent link to this record
 

 
Author (up) Vacit Oguz Yazici; Abel Gonzalez-Garcia; Arnau Ramisa; Bartlomiej Twardowski; Joost Van de Weijer edit   pdf
url  openurl
  Title Orderless Recurrent Models for Multi-label Classification Type Conference Article
  Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recurrent neural networks (RNN) are popular for many computer vision tasks, including multi-label classification. Since RNNs produce sequential outputs, labels need to be ordered for the multi-label classification task. Current approaches sort labels according to their frequency, typically ordering them in either rare-first or frequent-first. These imposed orderings do not take into account that the natural order to generate the labels can change for each image, e.g.\ first the dominant object before summing up the smaller objects in the image. Therefore, in this paper, we propose ways to dynamically order the ground truth labels with the predicted label sequence. This allows for the faster training of more optimal LSTM models for multi-label classification. Analysis evidences that our method does not suffer from duplicate generation, something which is common for other models. Furthermore, it outperforms other CNN-RNN models, and we show that a standard architecture of an image encoder and language decoder trained with our proposed loss obtains the state-of-the-art results on the challenging MS-COCO, WIDER Attribute and PA-100K and competitive results on NUS-WIDE.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes LAMP; 600.109; 601.309; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ YGR2020 Serial 3408  
Permanent link to this record
 

 
Author (up) Wenlong Deng; Yongli Mou; Takahiro Kashiwa; Sergio Escalera; Kohei Nagai; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger edit  url
openurl 
  Title Vision based Pixel-level Bridge Structural Damage Detection Using a Link ASPP Network Type Journal Article
  Year 2020 Publication Automation in Construction Abbreviated Journal AC  
  Volume 110 Issue Pages 102973  
  Keywords Semantic image segmentation; Deep learning  
  Abstract Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface structural damage detection, such as delamination and rebar exposure. It is well known that the quality of a deep learning model is highly dependent on the quality of the training dataset. Bridge damage detection, our application domain, has the following main challenges: (i) labeling the damages requires knowledgeable civil engineering professionals, which makes it difficult to collect a large annotated dataset; (ii) the damage area could be very small, whereas the background area is large, which creates an unbalanced training environment; (iii) due to the difficulty to exactly determine the extension of the damage, there is often a variation among different labelers who perform pixel-wise labeling. In this paper, we propose a novel model for bridge structural damage detection to address the first two challenges. This paper follows the idea of an atrous spatial pyramid pooling (ASPP) module that is designed as a novel network for bridge damage detection. Further, we introduce the weight balanced Intersection over Union (IoU) loss function to achieve accurate segmentation on a highly unbalanced small dataset. The experimental results show that (i) the IoU loss function improves the overall performance of damage detection, as compared to cross entropy loss or focal loss, and (ii) the proposed model has a better ability to detect a minority class than other light segmentation networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ DMK2020 Serial 3314  
Permanent link to this record
 

 
Author (up) Xavier Soria; Edgar Riba; Angel Sappa edit   pdf
url  doi
openurl 
  Title Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection Type Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper proposes a Deep Learning based edge detector, which is inspired on both HED (Holistically-Nested Edge Detection) and Xception networks. The proposed approach generates thin edge-maps that are plausible for human eyes; it can be used in any edge detection task without previous training or fine tuning process. As a second contribution, a large dataset with carefully annotated edges has been generated. This dataset has been used for training the proposed approach as well the state-of-the-art algorithms for comparisons. Quantitative and qualitative evaluations have been performed on different benchmarks showing improvements with the proposed method when F-measure of ODS and OIS are considered.  
  Address Aspen; USA; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes MSIAU; 600.130; 601.349; 600.122 Approved no  
  Call Number Admin @ si @ SRS2020 Serial 3434  
Permanent link to this record
 

 
Author (up) Xialei Liu; Chenshen Wu; Mikel Menta; Luis Herranz; Bogdan Raducanu; Andrew Bagdanov; Shangling Jui; Joost Van de Weijer edit   pdf
openurl 
  Title Generative Feature Replay for Class-Incremental Learning Type Conference Article
  Year 2020 Publication CLVISION – Workshop on Continual Learning in Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Humans are capable of learning new tasks without forgetting previous ones, while neural networks fail due to catastrophic forgetting between new and previously-learned tasks. We consider a class-incremental setting which means that the task-ID is unknown at inference time. The imbalance between old and new classes typically results in a bias of the network towards the newest ones. This imbalance problem can either be addressed by storing exemplars from previous tasks, or by using image replay methods. However, the latter can only be applied to toy datasets since image generation for complex datasets is a hard problem.
We propose a solution to the imbalance problem based on generative feature replay which does not require any exemplars. To do this, we split the network into two parts: a feature extractor and a classifier. To prevent forgetting, we combine generative feature replay in the classifier with feature distillation in the feature extractor. Through feature generation, our method reduces the complexity of generative replay and prevents the imbalance problem. Our approach is computationally efficient and scalable to large datasets. Experiments confirm that our approach achieves state-of-the-art results on CIFAR-100 and ImageNet, while requiring only a fraction of the storage needed for exemplar-based continual learning
 
  Address Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 601.309; 602.200; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ LWM2020 Serial 3419  
Permanent link to this record
 

 
Author (up) Xiangyang Li; Luis Herranz; Shuqiang Jiang edit   pdf
url  openurl
  Title Multifaceted Analysis of Fine-Tuning in Deep Model for Visual Recognition Type Journal
  Year 2020 Publication ACM Transactions on Data Science Abbreviated Journal ACM  
  Volume Issue Pages  
  Keywords  
  Abstract In recent years, convolutional neural networks (CNNs) have achieved impressive performance for various visual recognition scenarios. CNNs trained on large labeled datasets can not only obtain significant performance on most challenging benchmarks but also provide powerful representations, which can be used to a wide range of other tasks. However, the requirement of massive amounts of data to train deep neural networks is a major drawback of these models, as the data available is usually limited or imbalanced. Fine-tuning (FT) is an effective way to transfer knowledge learned in a source dataset to a target task. In this paper, we introduce and systematically investigate several factors that influence the performance of fine-tuning for visual recognition. These factors include parameters for the retraining procedure (e.g., the initial learning rate of fine-tuning), the distribution of the source and target data (e.g., the number of categories in the source dataset, the distance between the source and target datasets) and so on. We quantitatively and qualitatively analyze these factors, evaluate their influence, and present many empirical observations. The results reveal insights into what fine-tuning changes CNN parameters and provide useful and evidence-backed intuitions about how to implement fine-tuning for computer vision tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ LHJ2020 Serial 3423  
Permanent link to this record
 

 
Author (up) Xinhang Song; Haitao Zeng; Sixian Zhang; Luis Herranz; Shuqiang Jiang edit  url
openurl 
  Title Generalized Zero-shot Learning with Multi-source Semantic Embeddings for Scene Recognition Type Conference Article
  Year 2020 Publication 28th ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recognizing visual categories from semantic descriptions is a promising way to extend the capability of a visual classifier beyond the concepts represented in the training data (i.e. seen categories). This problem is addressed by (generalized) zero-shot learning methods (GZSL), which leverage semantic descriptions that connect them to seen categories (e.g. label embedding, attributes). Conventional GZSL are designed mostly for object recognition. In this paper we focus on zero-shot scene recognition, a more challenging setting with hundreds of categories where their differences can be subtle and often localized in certain objects or regions. Conventional GZSL representations are not rich enough to capture these local discriminative differences. Addressing these limitations, we propose a feature generation framework with two novel components: 1) multiple sources of semantic information (i.e. attributes, word embeddings and descriptions), 2) region descriptions that can enhance scene discrimination. To generate synthetic visual features we propose a two-step generative approach, where local descriptions are sampled and used as conditions to generate visual features. The generated features are then aggregated and used together with real features to train a joint classifier. In order to evaluate the proposed method, we introduce a new dataset for zero-shot scene recognition with multi-semantic annotations. Experimental results on the proposed dataset and SUN Attribute dataset illustrate the effectiveness of the proposed method.  
  Address Virtual; October 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACM  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ SZZ2020 Serial 3465  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: