toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alicia Fornes; Asma Bensalah; Cristina Carmona_Duarte; Jialuo Chen; Miguel A. Ferrer; Andreas Fischer; Josep Llados; Cristina Martin; Eloy Opisso; Rejean Plamondon; Anna Scius-Bertrand; Josep Maria Tormos edit   pdf
url  doi
openurl 
  Title The RPM3D Project: 3D Kinematics for Remote Patient Monitoring Type Conference Article
  Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal  
  Volume 13424 Issue Pages 217-226  
  Keywords Healthcare applications; Kinematic; Theory of Rapid Human Movements; Human activity recognition; Stroke rehabilitation; 3D kinematics  
  Abstract This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute (https://www.guttmann.com/en/) (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.  
  Address (up) June 7-9, 2022, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ FBC2022 Serial 3739  
Permanent link to this record
 

 
Author Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title A Generic Image Retrieval Method for Date Estimation of Historical Document Collections Type Conference Article
  Year 2022 Publication Document Analysis Systems.15th IAPR International Workshop, (DAS2022) Abbreviated Journal  
  Volume 13237 Issue Pages 583–597  
  Keywords Date estimation; Document retrieval; Image retrieval; Ranking loss; Smooth-nDCG  
  Abstract Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images.  
  Address (up) La Rochelle, France; May 22–25, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ MGR2022 Serial 3694  
Permanent link to this record
 

 
Author Josep Brugues Pujolras; Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title A Multilingual Approach to Scene Text Visual Question Answering Type Conference Article
  Year 2022 Publication Document Analysis Systems.15th IAPR International Workshop, (DAS2022) Abbreviated Journal  
  Volume Issue Pages 65-79  
  Keywords Scene text; Visual question answering; Multilingual word embeddings; Vision and language; Deep learning  
  Abstract Scene Text Visual Question Answering (ST-VQA) has recently emerged as a hot research topic in Computer Vision. Current ST-VQA models have a big potential for many types of applications but lack the ability to perform well on more than one language at a time due to the lack of multilingual data, as well as the use of monolingual word embeddings for training. In this work, we explore the possibility to obtain bilingual and multilingual VQA models. In that regard, we use an already established VQA model that uses monolingual word embeddings as part of its pipeline and substitute them by FastText and BPEmb multilingual word embeddings that have been aligned to English. Our experiments demonstrate that it is possible to obtain bilingual and multilingual VQA models with a minimal loss in performance in languages not used during training, as well as a multilingual model trained in multiple languages that match the performance of the respective monolingual baselines.  
  Address (up) La Rochelle, France; May 22–25, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 611.004; 600.155; 601.002 Approved no  
  Call Number Admin @ si @ BGK2022b Serial 3695  
Permanent link to this record
 

 
Author Sergi Garcia Bordils; George Tom; Sangeeth Reddy; Minesh Mathew; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas edit   pdf
url  doi
isbn  openurl
  Title Read While You Drive-Multilingual Text Tracking on the Road Type Conference Article
  Year 2022 Publication 15th IAPR International workshop on document analysis systems Abbreviated Journal  
  Volume 13237 Issue Pages 756–770  
  Keywords  
  Abstract Visual data obtained during driving scenarios usually contain large amounts of text that conveys semantic information necessary to analyse the urban environment and is integral to the traffic control plan. Yet, research on autonomous driving or driver assistance systems typically ignores this information. To advance research in this direction, we present RoadText-3K, a large driving video dataset with fully annotated text. RoadText-3K is three times bigger than its predecessor and contains data from varied geographical locations, unconstrained driving conditions and multiple languages and scripts. We offer a comprehensive analysis of tracking by detection and detection by tracking methods exploring the limits of state-of-the-art text detection. Finally, we propose a new end-to-end trainable tracking model that yields state-of-the-art results on this challenging dataset. Our experiments demonstrate the complexity and variability of RoadText-3K and establish a new, realistic benchmark for scene text tracking in the wild.  
  Address (up) La Rochelle; France; May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-031-06554-5 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.155; 611.022; 611.004 Approved no  
  Call Number Admin @ si @ GTR2022 Serial 3783  
Permanent link to this record
 

 
Author Danna Xue; Fei Yang; Pei Wang; Luis Herranz; Jinqiu Sun; Yu Zhu; Yanning Zhang edit   pdf
doi  isbn
openurl 
  Title SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision Type Conference Article
  Year 2022 Publication 30th ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages 6539-6548  
  Keywords  
  Abstract Accurate semantic segmentation models typically require significant computational resources, inhibiting their use in practical applications. Recent works rely on well-crafted lightweight models to achieve fast inference. However, these models cannot flexibly adapt to varying accuracy and efficiency requirements. In this paper, we propose a simple but effective slimmable semantic segmentation (SlimSeg) method, which can be executed at different capacities during inference depending on the desired accuracy-efficiency tradeoff. More specifically, we employ parametrized channel slimming by stepwise downward knowledge distillation during training. Motivated by the observation that the differences between segmentation results of each submodel are mainly near the semantic borders, we introduce an additional boundary guided semantic segmentation loss to further improve the performance of each submodel. We show that our proposed SlimSeg with various mainstream networks can produce flexible models that provide dynamic adjustment of computational cost and better performance than independent models. Extensive experiments on semantic segmentation benchmarks, Cityscapes and CamVid, demonstrate the generalization ability of our framework.  
  Address (up) Lisboa, Portugal, October 2022  
  Corporate Author Thesis  
  Publisher Association for Computing Machinery Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-9203-7 Medium  
  Area Expedition Conference MM  
  Notes MACO; 600.161; 601.400 Approved no  
  Call Number Admin @ si @ XYW2022 Serial 3758  
Permanent link to this record
 

 
Author Angel Sappa; Patricia Suarez; Henry Velesaca; Dario Carpio edit   pdf
url  openurl
  Title Domain Adaptation in Image Dehazing: Exploring the Usage of Images from Virtual Scenarios Type Conference Article
  Year 2022 Publication 16th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing Abbreviated Journal  
  Volume Issue Pages 85-92  
  Keywords Domain adaptation; Synthetic hazed dataset; Dehazing  
  Abstract This work presents a novel domain adaptation strategy for deep learning-based approaches to solve the image dehazing
problem. Firstly, a large set of synthetic images is generated by using a realistic 3D graphic simulator; these synthetic
images contain different densities of haze, which are used for training the model that is later adapted to any real scenario.
The adaptation process requires just a few images to fine-tune the model parameters. The proposed strategy allows
overcoming the limitation of training a given model with few images. In other words, the proposed strategy implements
the adaptation of a haze removal model trained with synthetic images to real scenarios. It should be noticed that it is quite
difficult, if not impossible, to have large sets of pairs of real-world images (with and without haze) to train in a supervised
way dehazing algorithms. Experimental results are provided showing the validity of the proposed domain adaptation
strategy.
 
  Address (up) Lisboa; Portugal; July 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CGVCVIP  
  Notes MSIAU; no proj Approved no  
  Call Number Admin @ si @ SSV2022 Serial 3804  
Permanent link to this record
 

 
Author Javier Rodenas; Bhalaji Nagarajan; Marc Bolaños; Petia Radeva edit  url
openurl 
  Title Learning Multi-Subset of Classes for Fine-Grained Food Recognition Type Conference Article
  Year 2022 Publication 7th International Workshop on Multimedia Assisted Dietary Management Abbreviated Journal  
  Volume Issue Pages 17–26  
  Keywords  
  Abstract Food image recognition is a complex computer vision task, because of the large number of fine-grained food classes. Fine-grained recognition tasks focus on learning subtle discriminative details to distinguish similar classes. In this paper, we introduce a new method to improve the classification of classes that are more difficult to discriminate based on Multi-Subsets learning. Using a pre-trained network, we organize classes in multiple subsets using a clustering technique. Later, we embed these subsets in a multi-head model structure. This structure has three distinguishable parts. First, we use several shared blocks to learn the generalized representation of the data. Second, we use multiple specialized blocks focusing on specific subsets that are difficult to distinguish. Lastly, we use a fully connected layer to weight the different subsets in an end-to-end manner by combining the neuron outputs. We validated our proposed method using two recent state-of-the-art vision transformers on three public food recognition datasets. Our method was successful in learning the confused classes better and we outperformed the state-of-the-art on the three datasets.  
  Address (up) Lisboa; Portugal; October 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MADiMa  
  Notes MILAB Approved no  
  Call Number Admin @ si @ RNB2022 Serial 3797  
Permanent link to this record
 

 
Author Silvio Giancola; Anthony Cioppa; Adrien Deliege; Floriane Magera; Vladimir Somers; Le Kang; Xin Zhou; Olivier Barnich; Christophe De Vleeschouwer; Alexandre Alahi; Bernard Ghanem; Marc Van Droogenbroeck; Abdulrahman Darwish; Adrien Maglo; Albert Clapes; Andreas Luyts; Andrei Boiarov; Artur Xarles; Astrid Orcesi; Avijit Shah; Baoyu Fan; Bharath Comandur; Chen Chen; Chen Zhang; Chen Zhao; Chengzhi Lin; Cheuk-Yiu Chan; Chun Chuen Hui; Dengjie Li; Fan Yang; Fan Liang; Fang Da; Feng Yan; Fufu Yu; Guanshuo Wang; H. Anthony Chan; He Zhu; Hongwei Kan; Jiaming Chu; Jianming Hu; Jianyang Gu; Jin Chen; Joao V. B. Soares; Jonas Theiner; Jorge De Corte; Jose Henrique Brito; Jun Zhang; Junjie Li; Junwei Liang; Leqi Shen; Lin Ma; Lingchi Chen; Miguel Santos Marques; Mike Azatov; Nikita Kasatkin; Ning Wang; Qiong Jia; Quoc Cuong Pham; Ralph Ewerth; Ran Song; Rengang Li; Rikke Gade; Ruben Debien; Runze Zhang; Sangrok Lee; Sergio Escalera; Shan Jiang; Shigeyuki Odashima; Shimin Chen; Shoichi Masui; Shouhong Ding; Sin-wai Chan; Siyu Chen; Tallal El-Shabrawy; Tao He; Thomas B. Moeslund; Wan-Chi Siu; Wei Zhang; Wei Li; Xiangwei Wang; Xiao Tan; Xiaochuan Li; Xiaolin Wei; Xiaoqing Ye; Xing Liu; Xinying Wang; Yandong Guo; Yaqian Zhao; Yi Yu; Yingying Li; Yue He; Yujie Zhong; Zhenhua Guo; Zhiheng Li edit  url
doi  openurl
  Title SoccerNet 2022 Challenges Results Type Conference Article
  Year 2022 Publication 5th International ACM Workshop on Multimedia Content Analysis in Sports Abbreviated Journal  
  Volume Issue Pages 75-86  
  Keywords  
  Abstract The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in a replay, (3) pitch localization, focusing on detecting line and goal part elements, (4) camera calibration, dedicated to retrieving the intrinsic and extrinsic camera parameters, (5) player re-identification, focusing on retrieving the same players across multiple views, and (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams. Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations. More information on the tasks, challenges and leaderboards are available on this https URL. Baselines and development kits are available on this https URL.  
  Address (up) Lisboa; Portugal; October 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACMW  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ GCD2022 Serial 3801  
Permanent link to this record
 

 
Author Kai Wang; Fei Yang; Joost Van de Weijer edit   pdf
openurl 
  Title Attention Distillation: self-supervised vision transformer students need more guidance Type Conference Article
  Year 2022 Publication 33rd British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Self-supervised learning has been widely applied to train high-quality vision transformers. Unleashing their excellent performance on memory and compute constraint devices is therefore an important research topic. However, how to distill knowledge from one self-supervised ViT to another has not yet been explored. Moreover, the existing self-supervised knowledge distillation (SSKD) methods focus on ConvNet based architectures are suboptimal for ViT knowledge distillation. In this paper, we study knowledge distillation of self-supervised vision transformers (ViT-SSKD). We show that directly distilling information from the crucial attention mechanism from teacher to student can significantly narrow the performance gap between both. In experiments on ImageNet-Subset and ImageNet-1K, we show that our method AttnDistill outperforms existing self-supervised knowledge distillation (SSKD) methods and achieves state-of-the-art k-NN accuracy compared with self-supervised learning (SSL) methods learning from scratch (with the ViT-S model). We are also the first to apply the tiny ViT-T model on self-supervised learning. Moreover, AttnDistill is independent of self-supervised learning algorithms, it can be adapted to ViT based SSL methods to improve the performance in future research.  
  Address (up) London; UK; November 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes LAMP; 600.147 Approved no  
  Call Number Admin @ si @ WYW2022 Serial 3793  
Permanent link to this record
 

 
Author Kai Wang; Chenshen Wu; Andrew Bagdanov; Xialei Liu; Shiqi Yang; Shangling Jui; Joost Van de Weijer edit  openurl
  Title Positive Pair Distillation Considered Harmful: Continual Meta Metric Learning for Lifelong Object Re-Identification Type Conference Article
  Year 2022 Publication 33rd British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Lifelong object re-identification incrementally learns from a stream of re-identification tasks. The objective is to learn a representation that can be applied to all tasks and that generalizes to previously unseen re-identification tasks. The main challenge is that at inference time the representation must generalize to previously unseen identities. To address this problem, we apply continual meta metric learning to lifelong object re-identification. To prevent forgetting of previous tasks, we use knowledge distillation and explore the roles of positive and negative pairs. Based on our observation that the distillation and metric losses are antagonistic, we propose to remove positive pairs from distillation to robustify model updates. Our method, called Distillation without Positive Pairs (DwoPP), is evaluated on extensive intra-domain experiments on person and vehicle re-identification datasets, as well as inter-domain experiments on the LReID benchmark. Our experiments demonstrate that DwoPP significantly outperforms the state-of-the-art.  
  Address (up) London; UK; November 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes LAMP; 600.147 Approved no  
  Call Number Admin @ si @ WWB2022 Serial 3794  
Permanent link to this record
 

 
Author Akhil Gurram edit  isbn
openurl 
  Title Monocular Depth Estimation for Autonomous Driving Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract 3D geometric information is essential for on-board perception in autonomous driving and driver assistance. Autonomous vehicles (AVs) are equipped with calibrated sensor suites. As part of these suites, we can find LiDARs, which are expensive active sensors in charge of providing the 3D geometric information. Depending on the operational conditions for the AV, calibrated stereo rigs may be also sufficient for obtaining 3D geometric information, being these rigs less expensive and easier to install than LiDARs. However, ensuring a proper maintenance and calibration of these types of sensors is not trivial. Accordingly, there is an increasing interest on performing monocular depth estimation (MDE) to obtain 3D geometric information on-board. MDE is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Moreover, a set of single cameras with MDE capabilities would still be a cheap solution for on-board perception, relatively easy to integrate and maintain in an AV.
Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Accordingly, the overall goal of this PhD is to study methods for improving CNN-based MDE accuracy under different training settings. More specifically, this PhD addresses different research questions that are described below. When we started to work in this PhD, state-of-theart methods for MDE were already based on CNNs. In fact, a promising line of work consisted in using image-based semantic supervision (i.e., pixel-level class labels) while training CNNs for MDE using LiDAR-based supervision (i.e., depth). It was common practice to assume that the same raw training data are complemented by both types of supervision, i.e., with depth and semantic labels. However, in practice, it was more common to find heterogeneous datasets with either only depth supervision or only semantic supervision. Therefore, our first work was to research if we could train CNNs for MDE by leveraging depth and semantic information from heterogeneous datasets. We show that this is indeed possible, and we surpassed the state-of-the-art results on MDE at the time we did this research. To achieve our results, we proposed a particular CNN architecture and a new training protocol.
After this research, it was clear that the upper-bound setting to train CNN-based MDE models consists in using LiDAR data as supervision. However, it would be cheaper and more scalable if we would be able to train such models from monocular sequences. Obviously, this is far more challenging, but worth to research. Training MDE models using monocular sequences is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. To alleviate these problems, we perform MDE by virtual-world supervision and real-world SfM self-supervision. We call our proposalMonoDEVSNet. We compensate the SfM self-supervision limitations by leveraging
virtual-world images with accurate semantic and depth supervision, as well as addressing the virtual-to-real domain gap. MonoDEVSNet outperformed previous MDE CNNs trained on monocular and even stereo sequences. We have publicly released MonoDEVSNet at <https://github.com/HMRC-AEL/MonoDEVSNet>.
Finally, since MDE is performed to produce 3D information for being used in downstream tasks related to on-board perception. We also address the question of whether the standard metrics for MDE assessment are a good indicator for future MDE-based driving-related perception tasks. By using 3D object detection on point clouds as proxy of on-board perception, we conclude that, indeed, MDE evaluation metrics give rise to a ranking of methods which reflects relatively well the 3D object detection results we may expect.
 
  Address (up) March, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez;Onay Urfalioglu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-0-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Gur2022 Serial 3712  
Permanent link to this record
 

 
Author Jun Wan; Chi Lin; Longyin Wen; Yunan Li; Qiguang Miao; Sergio Escalera; Gholamreza Anbarjafari; Isabelle Guyon; Guodong Guo; Stan Z. Li edit   pdf
url  doi
openurl 
  Title ChaLearn Looking at People: IsoGD and ConGD Large-scale RGB-D Gesture Recognition Type Journal Article
  Year 2022 Publication IEEE Transactions on Cybernetics Abbreviated Journal TCIBERN  
  Volume 52 Issue 5 Pages 3422-3433  
  Keywords  
  Abstract The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on Pattern Recognition (ICPR) 2016 and International Conference on Computer Vision (ICCV) 2017, attracting more than 200 teams round the world. This challenge has two tracks, focusing on isolated and continuous gesture recognition, respectively. This paper describes the creation of both benchmark datasets and analyzes the advances in large-scale gesture recognition based on these two datasets. We discuss the challenges of collecting large-scale ground-truth annotations of gesture recognition, and provide a detailed analysis of the current state-of-the-art methods for large-scale isolated and continuous gesture recognition based on RGB-D video sequences. In addition to recognition rate and mean jaccard index (MJI) as evaluation metrics used in our previous challenges, we also introduce the corrected segmentation rate (CSR) metric to evaluate the performance of temporal segmentation for continuous gesture recognition. Furthermore, we propose a bidirectional long short-term memory (Bi-LSTM) baseline method, determining the video division points based on the skeleton points extracted by convolutional pose machine (CPM). Experiments demonstrate that the proposed Bi-LSTM outperforms the state-of-the-art methods with an absolute improvement of 8.1% (from 0.8917 to 0.9639) of CSR.  
  Address (up) May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ WLW2022 Serial 3522  
Permanent link to this record
 

 
Author Wenjuan Gong; Zhang Yue; Wei Wang; Cheng Peng; Jordi Gonzalez edit  doi
openurl 
  Title Meta-MMFNet: Meta-Learning Based Multi-Model Fusion Network for Micro-Expression Recognition Type Journal Article
  Year 2022 Publication ACM Transactions on Multimedia Computing, Communications, and Applications Abbreviated Journal ACMTMC  
  Volume Issue Pages  
  Keywords Feature Fusion; Model Fusion; Meta-Learning; Micro-Expression Recognition  
  Abstract Despite its wide applications in criminal investigations and clinical communications with patients suffering from autism, automatic micro-expression recognition remains a challenging problem because of the lack of training data and imbalanced classes problems. In this study, we proposed a meta-learning based multi-model fusion network (Meta-MMFNet) to solve the existing problems. The proposed method is based on the metric-based meta-learning pipeline, which is specifically designed for few-shot learning and is suitable for model-level fusion. The frame difference and optical flow features were fused, deep features were extracted from the fused feature, and finally in the meta-learning-based framework, weighted sum model fusion method was applied for micro-expression classification. Meta-MMFNet achieved better results than state-of-the-art methods on four datasets. The code is available at https://github.com/wenjgong/meta-fusion-based-method.  
  Address (up) May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.157 Approved no  
  Call Number Admin @ si @ GYW2022 Serial 3692  
Permanent link to this record
 

 
Author Carlos Boned Riera; Oriol Ramos Terrades edit  doi
openurl 
  Title Discriminative Neural Variational Model for Unbalanced Classification Tasks in Knowledge Graph Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2186-2191  
  Keywords Measurement; Couplings; Semantics; Ear; Benchmark testing; Data models; Pattern recognition  
  Abstract Nowadays the paradigm of link discovery problems has shown significant improvements on Knowledge Graphs. However, method performances are harmed by the unbalanced nature of this classification problem, since many methods are easily biased to not find proper links. In this paper we present a discriminative neural variational auto-encoder model, called DNVAE from now on, in which we have introduced latent variables to serve as embedding vectors. As a result, the learnt generative model approximate better the underlying distribution and, at the same time, it better differentiate the type of relations in the knowledge graph. We have evaluated this approach on benchmark knowledge graph and Census records. Results in this last data set are quite impressive since we reach the highest possible score in the evaluation metrics. However, further experiments are still needed to deeper evaluate the performance of the method in more challenging tasks.  
  Address (up) Montreal; Quebec; Canada; August 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.162 Approved no  
  Call Number Admin @ si @ BoR2022 Serial 3741  
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Joost Van de Weijer; Longlong Yu edit   pdf
url  doi
openurl 
  Title Visual Transformers with Primal Object Queries for Multi-Label Image Classification Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Multi-label image classification is about predicting a set of class labels that can be considered as orderless sequential data. Transformers process the sequential data as a whole, therefore they are inherently good at set prediction. The first vision-based transformer model, which was proposed for the object detection task introduced the concept of object queries. Object queries are learnable positional encodings that are used by attention modules in decoder layers to decode the object classes or bounding boxes using the region of interests in an image. However, inputting the same set of object queries to different decoder layers hinders the training: it results in lower performance and delays convergence. In this paper, we propose the usage of primal object queries that are only provided at the start of the transformer decoder stack. In addition, we improve the mixup technique proposed for multi-label classification. The proposed transformer model with primal object queries improves the state-of-the-art class wise F1 metric by 2.1% and 1.8%; and speeds up the convergence by 79.0% and 38.6% on MS-COCO and NUS-WIDE datasets respectively.  
  Address (up) Montreal; Quebec; Canada; August 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes LAMP; 600.147; 601.309 Approved no  
  Call Number Admin @ si @ YWY2022 Serial 3786  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: