|   | 
Details
   web
Records
Author German Barquero; Sergio Escalera; Cristina Palmero
Title BeLFusion: Latent Diffusion for Behavior-Driven Human Motion Prediction Type Conference Article
Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal
Volume Issue Pages 2317-2327
Keywords
Abstract Stochastic human motion prediction (HMP) has generally been tackled with generative adversarial networks and variational autoencoders. Most prior works aim at predicting highly diverse movements in terms of the skeleton joints’ dispersion. This has led to methods predicting fast and motion-divergent movements, which are often unrealistic and incoherent with past motion. Such methods also neglect contexts that need to anticipate diverse low-range behaviors, or actions, with subtle joint displacements. To address these issues, we present BeLFusion, a model that, for the first time, leverages latent diffusion models in HMP to sample from a latent space where behavior is disentangled from pose and motion. As a result, diversity is encouraged from a behavioral perspective. Thanks to our behavior
coupler’s ability to transfer sampled behavior to ongoing motion, BeLFusion’s predictions display a variety of behaviors that are significantly more realistic than the state of the art. To support it, we introduce two metrics, the Area of
the Cumulative Motion Distribution, and the Average Pairwise Distance Error, which are correlated to our definition of realism according to a qualitative study with 126 participants. Finally, we prove BeLFusion’s generalization power in a new cross-dataset scenario for stochastic HMP.
Address (up) 2-6 October 2023. Paris (France)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ BEP2023 Serial 3829
Permanent link to this record
 

 
Author Albert Tatjer; Bhalaji Nagarajan; Ricardo Marques; Petia Radeva
Title CCLM: Class-Conditional Label Noise Modelling Type Conference Article
Year 2023 Publication 11th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal
Volume 14062 Issue Pages 3-14
Keywords
Abstract The performance of deep neural networks highly depends on the quality and volume of the training data. However, cost-effective labelling processes such as crowdsourcing and web crawling often lead to data with noisy (i.e., wrong) labels. Making models robust to this label noise is thus of prime importance. A common approach is using loss distributions to model the label noise. However, the robustness of these methods highly depends on the accuracy of the division of training set into clean and noisy samples. In this work, we dive in this research direction highlighting the existing problem of treating this distribution globally and propose a class-conditional approach to split the clean and noisy samples. We apply our approach to the popular DivideMix algorithm and show how the local treatment fares better with respect to the global treatment of loss distribution. We validate our hypothesis on two popular benchmark datasets and show substantial improvements over the baseline experiments. We further analyze the effectiveness of the proposal using two different metrics – Noise Division Accuracy and Classiness.
Address (up) Alicante; Spain; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IbPRIA
Notes MILAB Approved no
Call Number Admin @ si @ TNM2023 Serial 3925
Permanent link to this record
 

 
Author Debora Gil; Guillermo Torres; Carles Sanchez
Title Transforming radiomic features into radiological words Type Conference Article
Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pòster
Address (up) Cartagena de Indias; Colombia; April 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISBI
Notes IAM Approved no
Call Number Admin @ si @ GTS2023 Serial 3952
Permanent link to this record
 

 
Author Pau Cano; Debora Gil; Eva Musulen
Title Towards automatic detection of helicobacter pylori in histological samples of gastric tissue Type Conference Article
Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address (up) Cartagena de Indias; Colombia; April 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISBI
Notes IAM Approved no
Call Number Admin @ si @ CGM2023 Serial 3953
Permanent link to this record
 

 
Author Guillermo Torres; Debora Gil; Antonio Rosell; Sonia Baeza; Carles Sanchez
Title A radiomic biopsy for virtual histology of pulmonary nodules Type Conference Article
Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pòster
Address (up) Cartagena de Indias; Colombia; April 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISBI
Notes IAM Approved no
Call Number Admin @ si @ TGR2023b Serial 3954
Permanent link to this record
 

 
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer
Title Generative Multi-Label Zero-Shot Learning Type Journal Article
Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 45 Issue 12 Pages 14611-14624
Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis
Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.
Address (up) December 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; PID2021-128178OB-I00 Approved no
Call Number Admin @ si @ Serial 3853
Permanent link to this record
 

 
Author Yi Xiao; Felipe Codevilla; Diego Porres; Antonio Lopez
Title Scaling Vision-Based End-to-End Autonomous Driving with Multi-View Attention Learning Type Conference Article
Year 2023 Publication International Conference on Intelligent Robots and Systems Abbreviated Journal
Volume Issue Pages
Keywords
Abstract On end-to-end driving, human driving demonstrations are used to train perception-based driving models by imitation learning. This process is supervised on vehicle signals (e.g., steering angle, acceleration) but does not require extra costly supervision (human labeling of sensor data). As a representative of such vision-based end-to-end driving models, CILRS is commonly used as a baseline to compare with new driving models. So far, some latest models achieve better performance than CILRS by using expensive sensor suites and/or by using large amounts of human-labeled data for training. Given the difference in performance, one may think that it is not worth pursuing vision-based pure end-to-end driving. However, we argue that this approach still has great value and potential considering cost and maintenance. In this paper, we present CIL++, which improves on CILRS by both processing higher-resolution images using a human-inspired HFOV as an inductive bias and incorporating a proper attention mechanism. CIL++ achieves competitive performance compared to models which are more costly to develop. We propose to replace CILRS with CIL++ as a strong vision-based pure end-to-end driving baseline supervised by only vehicle signals and trained by conditional imitation learning.
Address (up) Detroit; USA; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IROS
Notes ADAS Approved no
Call Number Admin @ si @ XCP2023 Serial 3930
Permanent link to this record
 

 
Author Subhajit Maity; Sanket Biswas; Siladittya Manna; Ayan Banerjee; Josep Llados; Saumik Bhattacharya; Umapada Pal
Title SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation Type Conference Article
Year 2023 Publication 17th International Conference on Doccument Analysis and Recognition Abbreviated Journal
Volume 14187 Issue Pages 342–360
Keywords
Abstract Document layout analysis is a known problem to the documents research community and has been vastly explored yielding a multitude of solutions ranging from text mining, and recognition to graph-based representation, visual feature extraction, etc. However, most of the existing works have ignored the crucial fact regarding the scarcity of labeled data. With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain and thus making data annotation a tedious task. We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches which use text mining and textual labels, we use a complete vision-based approach in pre-training without any ground-truth label or its derivative. Instead, we generate pseudo-layouts from the document images to pre-train an image encoder to learn the document object representation and localization in a self-supervised framework before fine-tuning it with an object detection model. We show that our pipeline sets a new benchmark in this context and performs at par with the existing methods and the supervised counterparts, if not outperforms. The code is made publicly available at: this https URL
Address (up) Document Layout Analysis; Document
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ MBM2023 Serial 3990
Permanent link to this record
 

 
Author Asma Bensalah; Antonio Parziale; Giuseppe De Gregorio; Angelo Marcelli; Alicia Fornes; Josep Llados
Title I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation Type Conference Article
Year 2023 Publication 21st International Graphonomics Conference Abbreviated Journal
Volume Issue Pages 136–148
Keywords
Abstract During recent years, there here has been a boom in terms of deep learning use for handwriting analysis and recognition. One main application for handwriting analysis is early detection and diagnosis in the health field. Unfortunately, most real case problems still suffer a scarcity of data, which makes difficult the use of deep learning-based models. To alleviate this problem, some works resort to synthetic data generation. Lately, more works are directed towards guided data synthetic generation, a generation that uses the domain and data knowledge to generate realistic data that can be useful to train deep learning models. In this work, we combine the domain knowledge about the Alzheimer’s disease for handwriting and use it for a more guided data generation. Concretely, we have explored the use of in-air movements for synthetic data generation.
Address (up) Evora; Portugal; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IGS
Notes DAG Approved no
Call Number Admin @ si @ BPG2023 Serial 3838
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; Carles Sanchez; Guillermo Torres; Ignasi Garcia Olive; Ignasi Guasch; Samuel Garcia Reina; Felipe Andreo; Jose Luis Mate; Jose Luis Vercher; Antonio Rosell
Title Biopsia virtual radiomica para el diagnóstico histológico de nódulos pulmonares – Resultados intermedios del proyecto Radiolung Type Conference Article
Year 2023 Publication SEPAR Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pòster
Address (up) Granada; Spain; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference SEPAR
Notes IAM Approved no
Call Number Admin @ si @ BGS2023 Serial 3951
Permanent link to this record
 

 
Author Roberto Morales; Juan Quispe; Eduardo Aguilar
Title Exploring multi-food detection using deep learning-based algorithms Type Conference Article
Year 2023 Publication 13th International Conference on Pattern Recognition Systems Abbreviated Journal
Volume Issue Pages 1-7
Keywords
Abstract People are becoming increasingly concerned about their diet, whether for disease prevention, medical treatment or other purposes. In meals served in restaurants, schools or public canteens, it is not easy to identify the ingredients and/or the nutritional information they contain. Currently, technological solutions based on deep learning models have facilitated the recording and tracking of food consumed based on the recognition of the main dish present in an image. Considering that sometimes there may be multiple foods served on the same plate, food analysis should be treated as a multi-class object detection problem. EfficientDet and YOLOv5 are object detection algorithms that have demonstrated high mAP and real-time performance on general domain data. However, these models have not been evaluated and compared on public food datasets. Unlike general domain objects, foods have more challenging features inherent in their nature that increase the complexity of detection. In this work, we performed a performance evaluation of Efficient-Det and YOLOv5 on three public food datasets: UNIMIB2016, UECFood256 and ChileanFood64. From the results obtained, it can be seen that YOLOv5 provides a significant difference in terms of both mAP and response time compared to EfficientDet in all datasets. Furthermore, YOLOv5 outperforms the state-of-the-art on UECFood256, achieving an improvement of more than 4% in terms of mAP@.50 over the best reported.
Address (up) Guayaquil; Ecuador; July 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRS
Notes MILAB Approved no
Call Number Admin @ si @ MQA2023 Serial 3843
Permanent link to this record
 

 
Author Gisel Bastidas-Guacho; Patricio Moreno; Boris X. Vintimilla; Angel Sappa
Title Application on the Loop of Multimodal Image Fusion: Trends on Deep-Learning Based Approaches Type Conference Article
Year 2023 Publication 13th International Conference on Pattern Recognition Systems Abbreviated Journal
Volume 14234 Issue Pages 25–36
Keywords
Abstract Multimodal image fusion allows the combination of information from different modalities, which is useful for tasks such as object detection, edge detection, and tracking, to name a few. Using the fused representation for applications results in better task performance. There are several image fusion approaches, which have been summarized in surveys. However, the existing surveys focus on image fusion approaches where the application on the loop of multimodal image fusion is not considered. On the contrary, this study summarizes deep learning-based multimodal image fusion for computer vision (e.g., object detection) and image processing applications (e.g., semantic segmentation), that is, approaches where the application module leverages the multimodal fusion process to enhance the final result. Firstly, we introduce image fusion and the existing general frameworks for image fusion tasks such as multifocus, multiexposure and multimodal. Then, we describe the multimodal image fusion approaches. Next, we review the state-of-the-art deep learning multimodal image fusion approaches for vision applications. Finally, we conclude our survey with the trends of task-driven multimodal image fusion.
Address (up) Guayaquil; Ecuador; July 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRS
Notes MSIAU Approved no
Call Number Admin @ si @ BMV2023 Serial 3932
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa
Title Toward a Thermal Image-Like Representation Type Conference Article
Year 2023 Publication Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume Issue Pages 133-140
Keywords
Abstract This paper proposes a novel model to obtain thermal image-like representations to be used as an input in any thermal image compressive sensing approach (e.g., thermal image: filtering, enhancing, super-resolution). Thermal images offer interesting information about the objects in the scene, in addition to their temperature. Unfortunately, in most of the cases thermal cameras acquire low resolution/quality images. Hence, in order to improve these images, there are several state-of-the-art approaches that exploit complementary information from a low-cost channel (visible image) to increase the image quality of an expensive channel (infrared image). In these SOTA approaches visible images are fused at different levels without paying attention the images acquire information at different bands of the spectral. In this paper a novel approach is proposed to generate thermal image-like representations from a low cost visible images, by means of a contrastive cycled GAN network. Obtained representations (synthetic thermal image) can be later on used to improve the low quality thermal image of the same scene. Experimental results on different datasets are presented.
Address (up) Lisboa; Portugal; February 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MSIAU Approved no
Call Number Admin @ si @ SuS2023b Serial 3927
Permanent link to this record
 

 
Author David Dueñas; Mostafa Kamal; Petia Radeva
Title Efficient Deep Learning Ensemble for Skin Lesion Classification Type Conference Article
Year 2023 Publication Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume Issue Pages 303-314
Keywords
Abstract Vision Transformers (ViTs) are deep learning techniques that have been gaining in popularity in recent years.
In this work, we study the performance of ViTs and Convolutional Neural Networks (CNNs) on skin lesions classification tasks, specifically melanoma diagnosis. We show that regardless of the performance of both architectures, an ensemble of them can improve their generalization. We also present an adaptation to the Gram-OOD* method (detecting Out-of-distribution (OOD) using Gram matrices) for skin lesion images. Moreover, the integration of super-convergence was critical to success in building models with strict computing and training time constraints. We evaluated our ensemble of ViTs and CNNs, demonstrating that generalization is enhanced by placing first in the 2019 and third in the 2020 ISIC Challenge Live Leaderboards
(available at https://challenge.isic-archive.com/leaderboards/live/).
Address (up) Lisboa; Portugal; February 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MILAB Approved no
Call Number Admin @ si @ DKR2023 Serial 3928
Permanent link to this record
 

 
Author Albin Soutif; Antonio Carta; Joost Van de Weijer
Title Improving Online Continual Learning Performance and Stability with Temporal Ensembles Type Conference Article
Year 2023 Publication 2nd Conference on Lifelong Learning Agents Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Neural networks are very effective when trained on large datasets for a large number of iterations. However, when they are trained on non-stationary streams of data and in an online fashion, their performance is reduced (1) by the online setup, which limits the availability of data, (2) due to catastrophic forgetting because of the non-stationary nature of the data. Furthermore, several recent works (Caccia et al., 2022; Lange et al., 2023) arXiv:2205.13452 showed that replay methods used in continual learning suffer from the stability gap, encountered when evaluating the model continually (rather than only on task boundaries). In this article, we study the effect of model ensembling as a way to improve performance and stability in online continual learning. We notice that naively ensembling models coming from a variety of training tasks increases the performance in online continual learning considerably. Starting from this observation, and drawing inspirations from semi-supervised learning ensembling methods, we use a lightweight temporal ensemble that computes the exponential moving average of the weights (EMA) at test time, and show that it can drastically increase the performance and stability when used in combination with several methods from the literature.
Address (up) Montreal; Canada; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference COLLAS
Notes LAMP Approved no
Call Number Admin @ si @ SCW2023 Serial 3922
Permanent link to this record