toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hugo Jair Escalante; Jose Martinez; Sergio Escalera; Victor Ponce; Xavier Baro edit  url
openurl 
  Title Improving Bag of Visual Words Representations with Genetic Programming Type Conference Article
  Year 2015 Publication IEEE International Joint Conference on Neural Networks IJCNN2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The bag of visual words is a well established representation in diverse computer vision problems. Taking inspiration from the fields of text mining and retrieval, this representation has proved to be very effective in a large number of domains.
In most cases, a standard term-frequency weighting scheme is considered for representing images and videos in computer vision. This is somewhat surprising, as there are many alternative ways of generating bag of words representations within the text processing community. This paper explores the use of alternative weighting schemes for landmark tasks in computer vision: image
categorization and gesture recognition. We study the suitability of using well-known supervised and unsupervised weighting schemes for such tasks. More importantly, we devise a genetic program that learns new ways of representing images and videos under the bag of visual words representation. The proposed method learns to combine term-weighting primitives trying to maximize the classification performance. Experimental results are reported in standard image and video data sets showing the effectiveness of the proposed evolutionary algorithm.
 
  Address (down) Killarney; Ireland; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IJCNN  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ EME2015 Serial 2603  
Permanent link to this record
 

 
Author Isabelle Guyon; Kristin Bennett; Gavin Cawley; Hugo Jair Escalante; Sergio Escalera; Tin Kam Ho; Nuria Macia; Bisakha Ray; Alexander Statnikov; Evelyne Viegas edit  url
openurl 
  Title Design of the 2015 ChaLearn AutoML Challenge Type Conference Article
  Year 2015 Publication IEEE International Joint Conference on Neural Networks IJCNN2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract ChaLearn is organizing for IJCNN 2015 an Automatic Machine Learning challenge (AutoML) to solve classification and regression problems from given feature representations, without any human intervention. This is a challenge with code
submission: the code submitted can be executed automatically on the challenge servers to train and test learning machines on new datasets. However, there is no obligation to submit code. Half of the prizes can be won by just submitting prediction results.
There are six rounds (Prep, Novice, Intermediate, Advanced, Expert, and Master) in which datasets of progressive difficulty are introduced (5 per round). There is no requirement to participate in previous rounds to enter a new round. The rounds alternate AutoML phases in which submitted code is “blind tested” on
datasets the participants have never seen before, and Tweakathon phases giving time (' 1 month) to the participants to improve their methods by tweaking their code on those datasets. This challenge will push the state-of-the-art in fully automatic machine learning on a wide range of problems taken from real world
applications. The platform will remain available beyond the termination of the challenge: http://codalab.org/AutoML
 
  Address (down) Killarney; Ireland; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IJCNN  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ GBC2015a Serial 2604  
Permanent link to this record
 

 
Author Isabelle Guyon; Kristin Bennett; Gavin Cawley; Hugo Jair Escalante; Sergio Escalera edit   pdf
url  openurl
  Title The AutoML challenge on codalab Type Conference Article
  Year 2015 Publication IEEE International Joint Conference on Neural Networks IJCNN2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (down) Killarney; Ireland; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IJCNN  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ GBC2015b Serial 2650  
Permanent link to this record
 

 
Author Gerard Canal; Cecilio Angulo; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Gesture based Human Multi-Robot interaction Type Conference Article
  Year 2015 Publication IEEE International Joint Conference on Neural Networks IJCNN2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The emergence of robot applications for nontechnical users implies designing new ways of interaction between robotic platforms and users. The main goal of this work is the development of a gestural interface to interact with robots
in a similar way as humans do, allowing the user to provide information of the task with non-verbal communication. The gesture recognition application has been implemented using the Microsoft’s KinectTM v2 sensor. Hence, a real-time algorithm based on skeletal features is described to deal with both, static
gestures and dynamic ones, being the latter recognized using a weighted Dynamic Time Warping method. The gesture recognition application has been implemented in a multi-robot case.

A NAO humanoid robot is in charge of interacting with the users and respond to the visual signals they produce. Moreover, a wheeled Wifibot robot carries both the sensor and the NAO robot, easing navigation when necessary. A broad set of user tests have been carried out demonstrating that the system is, indeed, a
natural approach to human robot interaction, with a fast response and easy to use, showing high gesture recognition rates.
 
  Address (down) Killarney; Ireland; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IJCNN  
  Notes HuPBA;MILAB Approved no  
  Call Number CAE2015a Serial 2651  
Permanent link to this record
 

 
Author German Ros; J. Guerrero; Angel Sappa; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title VSLAM pose initialization via Lie groups and Lie algebras optimization Type Conference Article
  Year 2013 Publication Proceedings of IEEE International Conference on Robotics and Automation Abbreviated Journal  
  Volume Issue Pages 5740 - 5747  
  Keywords SLAM  
  Abstract We present a novel technique for estimating initial 3D poses in the context of localization and Visual SLAM problems. The presented approach can deal with noise, outliers and a large amount of input data and still performs in real time in a standard CPU. Our method produces solutions with an accuracy comparable to those produced by RANSAC but can be much faster when the percentage of outliers is high or for large amounts of input data. On the current work we propose to formulate the pose estimation as an optimization problem on Lie groups, considering their manifold structure as well as their associated Lie algebras. This allows us to perform a fast and simple optimization at the same time that conserve all the constraints imposed by the Lie group SE(3). Additionally, we present several key design concepts related with the cost function and its Jacobian; aspects that are critical for the good performance of the algorithm.  
  Address (down) Karlsruhe; Germany; May 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-4729 ISBN 978-1-4673-5641-1 Medium  
  Area Expedition Conference ICRA  
  Notes ADAS; 600.054; 600.055; 600.057 Approved no  
  Call Number Admin @ si @ RGS2013a; ADAS @ adas @ Serial 2225  
Permanent link to this record
 

 
Author Asma Bensalah; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados edit   pdf
doi  openurl
  Title Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis Type Conference Article
  Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal  
  Volume 13424 Issue Pages 336-348  
  Keywords Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk  
  Abstract Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.  
  Address (down) June 7-9, 2022, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ BFC2022 Serial 3738  
Permanent link to this record
 

 
Author Alicia Fornes; Asma Bensalah; Cristina Carmona_Duarte; Jialuo Chen; Miguel A. Ferrer; Andreas Fischer; Josep Llados; Cristina Martin; Eloy Opisso; Rejean Plamondon; Anna Scius-Bertrand; Josep Maria Tormos edit   pdf
url  doi
openurl 
  Title The RPM3D Project: 3D Kinematics for Remote Patient Monitoring Type Conference Article
  Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal  
  Volume 13424 Issue Pages 217-226  
  Keywords Healthcare applications; Kinematic; Theory of Rapid Human Movements; Human activity recognition; Stroke rehabilitation; 3D kinematics  
  Abstract This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute (https://www.guttmann.com/en/) (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.  
  Address (down) June 7-9, 2022, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ FBC2022 Serial 3739  
Permanent link to this record
 

 
Author Zhen Xu; Sergio Escalera; Adrien Pavao; Magali Richard; Wei-Wei Tu; Quanming Yao; Huan Zhao; Isabelle Guyon edit  doi
openurl 
  Title Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform Type Journal Article
  Year 2022 Publication Patterns Abbreviated Journal PATTERNS  
  Volume 3 Issue 7 Pages 100543  
  Keywords Machine learning; data science; benchmark platform; reproducibility; competitions  
  Abstract Obtaining a standardized benchmark of computational methods is a major issue in data-science communities. Dedicated frameworks enabling fair benchmarking in a unified environment are yet to be developed. Here, we introduce Codabench, a meta-benchmark platform that is open sourced and community driven for benchmarking algorithms or software agents versus datasets or tasks. A public instance of Codabench is open to everyone free of charge and allows benchmark organizers to fairly compare submissions under the same setting (software, hardware, data, algorithms), with custom protocols and data formats. Codabench has unique features facilitating easy organization of flexible and reproducible benchmarks, such as the possibility of reusing templates of benchmarks and supplying compute resources on demand. Codabench has been used internally and externally on various applications, receiving more than 130 users and 2,500 submissions. As illustrative use cases, we introduce four diverse benchmarks covering graph machine learning, cancer heterogeneity, clinical diagnosis, and reinforcement learning.  
  Address (down) June 24, 2022  
  Corporate Author Thesis  
  Publisher Science Direct Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ XEP2022 Serial 3764  
Permanent link to this record
 

 
Author Joana Maria Pujadas-Mora; Alicia Fornes; Oriol Ramos Terrades; Josep Llados; Jialuo Chen; Miquel Valls-Figols; Anna Cabre edit  doi
openurl 
  Title The Barcelona Historical Marriage Database and the Baix Llobregat Demographic Database. From Algorithms for Handwriting Recognition to Individual-Level Demographic and Socioeconomic Data Type Journal
  Year 2022 Publication Historical Life Course Studies Abbreviated Journal HLCS  
  Volume 12 Issue Pages 99-132  
  Keywords Individual demographic databases; Computer vision, Record linkage; Social mobility; Inequality; Migration; Word spotting; Handwriting recognition; Local censuses; Marriage Licences  
  Abstract The Barcelona Historical Marriage Database (BHMD) gathers records of the more than 600,000 marriages celebrated in the Diocese of Barcelona and their taxation registered in Barcelona Cathedral's so-called Marriage Licenses Books for the long period 1451–1905 and the BALL Demographic Database brings together the individual information recorded in the population registers, censuses and fiscal censuses of the main municipalities of the county of Baix Llobregat (Barcelona). In this ongoing collection 263,786 individual observations have been assembled, dating from the period between 1828 and 1965 by December 2020. The two databases started as part of different interdisciplinary research projects at the crossroads of Historical Demography and Computer Vision. Their construction uses artificial intelligence and computer vision methods as Handwriting Recognition to reduce the time of execution. However, its current state still requires some human intervention which explains the implemented crowdsourcing and game sourcing experiences. Moreover, knowledge graph techniques have allowed the application of advanced record linkage to link the same individuals and families across time and space. Moreover, we will discuss the main research lines using both databases developed so far in historical demography.  
  Address (down) June 23, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ PFR2022 Serial 3737  
Permanent link to this record
 

 
Author Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal edit  url
doi  openurl
  Title SemiDocSeg: Harnessing Semi-Supervised Learning for Document Layout Analysis Type Journal Article
  Year 2024 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume Issue Pages  
  Keywords Document layout analysis; Semi-supervised learning; Co-Occurrence matrix; Instance segmentation; Swin transformer  
  Abstract Document Layout Analysis (DLA) is the process of automatically identifying and categorizing the structural components (e.g. Text, Figure, Table, etc.) within a document to extract meaningful content and establish the page's layout structure. It is a crucial stage in document parsing, contributing to their comprehension. However, traditional DLA approaches often demand a significant volume of labeled training data, and the labor-intensive task of generating high-quality annotated training data poses a substantial challenge. In order to address this challenge, we proposed a semi-supervised setting that aims to perform learning on limited annotated categories by eliminating exhaustive and expensive mask annotations. The proposed setting is expected to be generalizable to novel categories as it learns the underlying positional information through a support set and class information through Co-Occurrence that can be generalized from annotated categories to novel categories. Here, we first extract features from the input image and support set with a shared multi-scale feature acquisition backbone. Then, the extracted feature representation is fed to the transformer encoder as a query. Later on, we utilize a semantic embedding network before the decoder to capture the underlying semantic relationships and similarities between different instances, enabling the model to make accurate predictions or classifications with only a limited amount of labeled data. Extensive experimentation on competitive benchmarks like PRIMA, DocLayNet, and Historical Japanese (HJ) demonstrate that this generalized setup obtains significant performance compared to the conventional supervised approach.  
  Address (down) June 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ BBL2024a Serial 4001  
Permanent link to this record
 

 
Author Reza Azad; Maryam Asadi-Aghbolaghi; Shohreh Kasaei; Sergio Escalera edit  doi
openurl 
  Title Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps Type Journal Article
  Year 2019 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT  
  Volume 29 Issue 6 Pages 1729-1740  
  Keywords Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding  
  Abstract Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.  
  Address (down) June 2019,  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ AAK2018 Serial 3213  
Permanent link to this record
 

 
Author Victor Ponce edit  url
openurl 
  Title Evolutionary Bags of Space-Time Features for Human Analysis Type Book Whole
  Year 2016 Publication PhD Thesis Universitat de Barcelona, UOC and CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords Computer algorithms; Digital image processing; Digital video; Analysis of variance; Dynamic programming; Evolutionary computation; Gesture  
  Abstract The representation (or feature) learning has been an emerging concept in the last years, since it collects a set of techniques that are present in any theoretical or practical methodology referring to artificial intelligence. In computer vision, a very common representation has adopted the form of the well-known Bag of Visual Words. This representation appears implicitly in most approaches where images are described, and is also present in a huge number of areas and domains: image content retrieval, pedestrian detection, human-computer interaction, surveillance, e-health, and social computing, amongst others. The early stages of this dissertation provide an approach for learning visual representations inside evolutionary algorithms, which consists of evolving weighting schemes to improve the BoVW representations for the task of recognizing categories of videos and images. Thus, we demonstrate the applicability of the most common weighting schemes, which are often used in text mining but are less frequently found in computer vision tasks. Beyond learning these visual representations, we provide an approach based on fusion strategies for learning spatiotemporal representations, from multimodal data obtained by depth sensors. Besides, we specially aim at the evolutionary and dynamic modelling, where the temporal factor is present in the nature of the data, such as video sequences of gestures and actions. Indeed, we explore the effects of probabilistic modelling for those approaches based on dynamic programming, so as to handle the temporal deformation and variance amongst video sequences of different categories. Finally, we integrate dynamic programming and generative models into an evolutionary computation framework, with the aim of learning Bags of SubGestures (BoSG) representations and hence to improve the generalization capability of standard gesture recognition approaches. The results obtained in the experimentation demonstrate, first, that evolutionary algorithms are useful for improving the representation of BoVW approaches in several datasets for recognizing categories in still images and video sequences. On the other hand, our experimentation reveals that both, the use of dynamic programming and generative models to align video sequences, and the representations obtained from applying fusion strategies in multimodal data, entail an enhancement on the performance when recognizing some gesture categories. Furthermore, the combination of evolutionary algorithms with models based on dynamic programming and generative approaches results, when aiming at the classification of video categories on large video datasets, in a considerable improvement over standard gesture and action recognition approaches. Finally, we demonstrate the applications of these representations in several domains for human analysis: classification of images where humans may be present, action and gesture recognition for general applications, and in particular for conversational settings within the field of restorative justice  
  Address (down) June 2016  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Xavier Baro;Hugo Jair Escalante  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Pon2016 Serial 2814  
Permanent link to this record
 

 
Author Kai Wang edit  isbn
openurl 
  Title Continual learning for hierarchical classification, few-shot recognition, and multi-modal learning Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep learning has drastically changed computer vision in the past decades and achieved great success in many applications, such as image classification, retrieval, detection, and segmentation thanks to the emergence of neural networks. Typically, for most applications, these networks are presented with examples from all tasks they are expected to perform. However, for many applications, this is not a realistic
scenario, and an algorithm is required to learn tasks sequentially. Continual learning proposes theory and methods for this scenario.
The main challenge for continual learning systems is called catastrophic forgetting and refers to a significant drop in performance on previous tasks. To tackle this problem, three main branches of methods have been explored to alleviate the forgetting in continual learning. They are regularization-based methods, rehearsalbased methods, and parameter isolation-based methods. However, most of them are focused on image classification tasks. Continual learning of many computer vision fields has still not been well-explored. Thus, in this thesis, we extend the continual learning knowledge to meta learning, we propose a method for the incremental learning of hierarchical relations for image classification, we explore image recognition in online continual learning, and study continual learning for cross-modal learning.
In this thesis, we explore the usage of image rehearsal when addressing the incremental meta learning problem. Observing that existingmethods fail to improve performance with saved exemplars, we propose to mix exemplars with current task data and episode-level distillation to overcome forgetting in incremental meta learning. Next, we study a more realistic image classification scenario where each class has multiple granularity levels. Only one label is present at any time, which requires the model to infer if the provided label has a hierarchical relation with any already known label. In experiments, we show that the estimated hierarchy information can be beneficial in both the training and inference stage.
For the online continual learning setting, we investigate the usage of intermediate feature replay. In this case, the training samples are only observed by the model only one time. Here we fix thememory buffer for feature replay and compare the effectiveness of saving features from different layers. Finally, we investigate multi-modal continual learning, where an image encoder is cooperating with a semantic branch. We consider the continual learning of both zero-shot learning and cross-modal retrieval problems.
 
  Address (down) July, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Luis Herranz;Joost Van de Weijer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-2-4 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Wan2022 Serial 3714  
Permanent link to this record
 

 
Author Idoia Ruiz edit  isbn
openurl 
  Title Deep Metric Learning for re-identification, tracking and hierarchical novelty detection Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Metric learning refers to the problem in machine learning of learning a distance or similarity measurement to compare data. In particular, deep metric learning involves learning a representation, also referred to as embedding, such that in the embedding space data samples can be compared based on the distance, directly providing a similarity measure. This step is necessary to perform several tasks in computer vision. It allows to perform the classification of images, regions or pixels, re-identification, out-of-distribution detection, object tracking in image sequences and any other task that requires computing a similarity score for their solution. This thesis addresses three specific problems that share this common requirement. The first one is person re-identification. Essentially, it is an image retrieval task that aims at finding instances of the same person according to a similarity measure. We first compare in terms of accuracy and efficiency, classical metric learning to basic deep learning based methods for this problem. In this context, we also study network distillation as a strategy to optimize the trade-off between accuracy and speed at inference time. The second problem we contribute to is novelty detection in image classification. It consists in detecting samples of novel classes, i.e. never seen during training. However, standard novelty detection does not provide any information about the novel samples besides they are unknown. Aiming at more informative outputs, we take advantage from the hierarchical taxonomies that are intrinsic to the classes. We propose a metric learning based approach that leverages the hierarchical relationships among classes during training, being able to predict the parent class for a novel sample in such hierarchical taxonomy. Our third contribution is in multi-object tracking and segmentation. This joint task comprises classification, detection, instance segmentation and tracking. Tracking can be formulated as a retrieval problem to be addressed with metric learning approaches. We tackle the existing difficulty in academic research that is the lack of annotated benchmarks for this task. To this matter, we introduce the problem of weakly supervised multi-object tracking and segmentation, facing the challenge of not having available ground truth for instance segmentation. We propose a synergistic training strategy that benefits from the knowledge of the supervised tasks that are being learnt simultaneously.  
  Address (down) July, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-4-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rui2022 Serial 3717  
Permanent link to this record
 

 
Author Arnau Baro; Carles Badal; Pau Torras; Alicia Fornes edit   pdf
url  openurl
  Title Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism Type Conference Article
  Year 2022 Publication 3rd International Workshop on Reading Music Systems (WoRMS2021) Abbreviated Journal  
  Volume Issue Pages 55-59  
  Keywords Optical Music Recognition; Digits; Image Classification  
  Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.  
  Address (down) July 23, 2021, Alicante (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WoRMS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ BBT2022 Serial 3734  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: