toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mohamed Ali Souibgui edit  isbn
openurl 
  Title Document Image Enhancement and Recognition in Low Resource Scenarios: Application to Ciphers and Handwritten Text Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In this thesis, we propose different contributions with the goal of enhancing and recognizing historical handwritten document images, especially the ones with rare scripts, such as cipher documents.
In the first part, some effective end-to-end models for Document Image Enhancement (DIE) using deep learning models were presented. First, Generative Adversarial Networks (cGAN) for different tasks (document clean-up, binarization, deblurring, and watermark removal) were explored. Next, we further improve the results by recovering the degraded document images into a clean and readable form by integrating a text recognizer into the cGAN model to promote the generated document image to be more readable. Afterward, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion.
The second part of the thesis addresses Handwritten Text Recognition (HTR) in low resource scenarios, i.e. when only few labeled training data is available. We propose novel methods for recognizing ciphers with rare scripts. First, a few-shot object detection based method was proposed. Then, we incorporate a progressive learning strategy that automatically assignspseudo-labels to a set of unlabeled data to reduce the human labor of annotating few pages while maintaining the good performance of the model. Secondly, a data generation technique based on Bayesian Program Learning (BPL) is proposed to overcome the lack of data in such rare scripts. Thirdly, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE). This latter self-supervised model is designed to tackle two tasks, text recognition and document image enhancement. The proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time, it requires substantially fewer data samples to converge.
In the third part of the thesis, we analyze, from the user perspective, the usage of HTR systems in low resource scenarios. This contrasts with the usual research on HTR, which often focuses on technical aspects only and rarely devotes efforts on implementing software tools for scholars in Humanities.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Alicia Fornes;Yousri Kessentini  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-8-6 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Sou2022 Serial 3757  
Permanent link to this record
 

 
Author Hassan Ahmed Sial edit  isbn
openurl 
  Title Estimating Light Effects from a Single Image: Deep Architectures and Ground-Truth Generation Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In this thesis, we explore how to estimate the effects of the light interacting with the scene objects from a single image. To achieve this goal, we focus on recovering intrinsic components like reflectance, shading, or light properties such as color and position using deep architectures. The success of these approaches relies on training on large and diversified image datasets. Therefore, we present several contributions on this such as: (a) a data-augmentation technique; (b) a ground-truth for an existing multi-illuminant dataset; (c) a family of synthetic datasets, SID for Surreal Intrinsic Datasets, with diversified backgrounds and coherent light conditions; and (d) a practical pipeline to create hybrid ground-truths to overcome the complexity of acquiring realistic light conditions in a massive way. In parallel with the creation of datasets, we trained different flexible encoder-decoder deep architectures incorporating physical constraints from the image formation models.

In the last part of the thesis, we apply all the previous experience to two different problems. Firstly, we create a large hybrid Doc3DShade dataset with real shading and synthetic reflectance under complex illumination conditions, that is used to train a two-stage architecture that improves the character recognition task in complex lighting conditions of unwrapped documents. Secondly, we tackle the problem of single image scene relighting by extending both, the SID dataset to present stronger shading and shadows effects, and the deep architectures to use intrinsic components to estimate new relit images.
 
  Address September 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Maria Vanrell;Ramon Baldrich  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-8-5 Medium  
  Area Expedition Conference  
  Notes CIC; Approved no  
  Call Number Admin @ si @ Sia2021 Serial 3607  
Permanent link to this record
 

 
Author Marina Alberti edit  openurl
  Title Detection and Alignment of Vascular Structures in Intravascular Ultrasound using Pattern Recognition Techniques Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In this thesis, several methods for the automatic analysis of Intravascular Ultrasound
(IVUS) sequences are presented, aimed at assisting physicians in the diagnosis, the assessment of the intervention and the monitoring of the patients with coronary disease.
The basis for the developed frameworks are machine learning, pattern recognition and
image processing techniques.
First, a novel approach for the automatic detection of vascular bifurcations in
IVUS is presented. The task is addressed as a binary classication problem (identifying bifurcation and non-bifurcation angular sectors in the sequence images). The
multiscale stacked sequential learning algorithm is applied, to take into account the
spatial and temporal context in IVUS sequences, and the results are rened using
a-priori information about branching dimensions and geometry. The achieved performance is comparable to intra- and inter-observer variability.
Then, we propose a novel method for the automatic non-rigid alignment of IVUS
sequences of the same patient, acquired at dierent moments (before and after percutaneous coronary intervention, or at baseline and follow-up examinations). The
method is based on the description of the morphological content of the vessel, obtained by extracting temporal morphological proles from the IVUS acquisitions, by
means of methods for segmentation, characterization and detection in IVUS. A technique for non-rigid sequence alignment – the Dynamic Time Warping algorithm -
is applied to the proles and adapted to the specic clinical problem. Two dierent robust strategies are proposed to address the partial overlapping between frames
of corresponding sequences, and a regularization term is introduced to compensate
for possible errors in the prole extraction. The benets of the proposed strategy
are demonstrated by extensive validation on synthetic and in-vivo data. The results
show the interest of the proposed non-linear alignment and the clinical value of the
method.
Finally, a novel automatic approach for the extraction of the luminal border in
IVUS images is presented. The method applies the multiscale stacked sequential
learning algorithm and extends it to 2-D+T, in a rst classication phase (the identi-
cation of lumen and non-lumen regions of the images), while an active contour model
is used in a second phase, to identify the lumen contour. The method is extended
to the longitudinal dimension of the sequences and it is validated on a challenging
data-set.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Simone Balocco;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Alb2013 Serial 2215  
Permanent link to this record
 

 
Author Francesco Ciompi edit  openurl
  Title Multi-Class Learning for Vessel Characterization in Intravascular Ultrasound Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In this thesis we tackle the problem of automatic characterization of human coronary vessel in Intravascular Ultrasound (IVUS) image modality. The basis for the whole characterization process is machine learning applied to multi-class problems. In all the presented approaches, the Error-Correcting Output Codes (ECOC) framework is used as central element for the design of multi-class classifiers.
Two main topics are tackled in this thesis. First, the automatic detection of the vessel borders is presented. For this purpose, a novel context-aware classifier for multi-class classification of the vessel morphology is presented, namely ECOC-DRF. Based on ECOC-DRF, the lumen border and the media-adventitia border in IVUS are robustly detected by means of a novel holistic approach, achieving an error comparable with inter-observer variability and with state of the art methods.
The two vessel borders define the atheroma area of the vessel. In this area, tissue characterization is required. For this purpose, we present a framework for automatic plaque characterization by processing both texture in IVUS images and spectral information in raw Radio Frequency data. Furthermore, a novel method for fusing in-vivo and in-vitro IVUS data for plaque characterization is presented, namely pSFFS. The method demonstrates to effectively fuse data generating a classifier that improves the tissue characterization in both in-vitro and in-vivo datasets.
A novel method for automatic video summarization in IVUS sequences is also presented. The method aims to detect the key frames of the sequence, i.e., the frames representative of morphological changes. This novel method represents the basis for video summarization in IVUS as well as the markers for the partition of the vessel into morphological and clinically interesting events.
Finally, multi-class learning based on ECOC is applied to lung tissue characterization in Computed Tomography. The novel proposed approach, based on supervised and unsupervised learning, achieves accurate tissue classification on a large and heterogeneous dataset.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Petia Radeva;Oriol Pujol  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Cio2012 Serial 2146  
Permanent link to this record
 

 
Author Juan Ignacio Toledo edit  isbn
openurl 
  Title Information Extraction from Heterogeneous Handwritten Documents Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In this thesis we explore information Extraction from totally or partially handwritten documents. Basically we are dealing with two different application scenarios. The first scenario are modern highly structured documents like forms. In this kind of documents, the semantic information is encoded in different fields with a pre-defined location in the document, therefore, information extraction becomes roughly equivalent to transcription. The second application scenario are loosely structured totally handwritten documents, besides transcribing them, we need to assign a semantic label, from a set of known values to the handwritten words.
In both scenarios, transcription is an important part of the information extraction. For that reason in this thesis we present two methods based on Neural Networks, to transcribe handwritten text.In order to tackle the challenge of loosely structured documents, we have produced a benchmark, consisting of a dataset, a defined set of tasks and a metric, that was presented to the community as an international competition. Also, we propose different models based on Convolutional and Recurrent neural networks that are able to transcribe and assign different semantic labels to each handwritten words, that is, able to perform Information Extraction.
 
  Address July 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-7-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ Tol2019 Serial 3389  
Permanent link to this record
 

 
Author Xim Cerda-Company edit  isbn
openurl 
  Title Understanding color vision: from psychophysics to computational modeling Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In this PhD we have approached the human color vision from two different points of view: psychophysics and computational modeling. First, we have evaluated 15 different tone-mapping operators (TMOs). We have conducted two experiments that
consider two different criteria: the first one evaluates the local relationships among intensity levels and the second one evaluates the global appearance of the tonemapped imagesw.r.t. the physical one (presented side by side). We conclude that the rankings depend on the criterion and they are not correlated. Considering both criteria, the best TMOs are KimKautz (Kim and Kautz, 2008) and Krawczyk (Krawczyk, Myszkowski, and Seidel, 2005). Another conclusion is that a more standardized evaluation criteria is needed to do a fair comparison among TMOs.
Secondly, we have conducted several psychophysical experiments to study the
color induction. We have studied two different properties of the visual stimuli: temporal frequency and luminance spatial distribution. To study the temporal frequency we defined equiluminant stimuli composed by both uniform and striped surrounds and we flashed them varying the flash duration. For uniform surrounds, the results show that color induction depends on both the flash duration and inducer’s chromaticity. As expected, in all chromatic conditions color contrast was induced. In contrast, for striped surrounds, we expected to induce color assimilation, but we observed color contrast or no induction. Since similar but not equiluminant striped stimuli induce color assimilation, we concluded that luminance differences could be a key factor to induce color assimilation. Thus, in a subsequent study, we have studied the luminance differences’ effect on color assimilation. We varied the luminance difference between the target region and its inducers and we observed that color assimilation depends on both this difference and the inducer’s chromaticity. For red-green condition (where the first inducer is red and the second one is green), color assimilation occurs in almost all luminance conditions.
Instead, for green-red condition, color assimilation never occurs. Purple-lime
and lime-purple chromatic conditions show that luminance difference is a key factor to induce color assimilation. When the target is darker than its surround, color assimilation is stronger in purple-lime, while when the target is brighter, color assimilation is stronger in lime-purple (’mirroring’ effect). Moreover, we evaluated whether color assimilation is due to luminance or brightness differences. Similarly to equiluminance condition, when the stimuli are equibrightness no color assimilation is induced. Our results support the hypothesis that mutual-inhibition plays a major role in color perception, or at least in color induction.
Finally, we have defined a new firing rate model of color processing in the V1
parvocellular pathway. We have modeled two different layers of this cortical area: layers 4Cb and 2/3. Our model is a recurrent dynamic computational model that considers both excitatory and inhibitory cells and their lateral connections. Moreover, it considers the existent laminar differences and the cells’ variety. Thus, we have modeled both single- and double-opponent simple cells and complex cells, which are a pool of double-opponent simple cells. A set of sinusoidal drifting gratings have been used to test the architecture. In these gratings we have varied several spatial properties such as temporal and spatial frequencies, grating’s area and orientation. To reproduce the electrophysiological observations, the architecture has to consider the existence of non-oriented double-opponent cells in layer 4Cb and the lack of lateral connections between single-opponent cells. Moreover, we have tested our lateral connections simulating the center-surround modulation and we have reproduced physiological measurements where for high contrast stimulus, the
result of the lateral connections is inhibitory, while it is facilitatory for low contrast stimulus.
 
  Address March 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Xavier Otazu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-4-2 Medium  
  Area Expedition Conference  
  Notes NEUROBIT Approved no  
  Call Number Admin @ si @ Cer2019 Serial 3259  
Permanent link to this record
 

 
Author Cesar de Souza edit  openurl
  Title Action Recognition in Videos: Data-efficient approaches for supervised learning of human action classification models for video Type Book Whole
  Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In this dissertation, we explore different ways to perform human action recognition in video clips. We focus on data efficiency, proposing new approaches that alleviate the need for laborious and time-consuming manual data annotation. In the first part of this dissertation, we start by analyzing previous state-of-the-art models, comparing their differences and similarities in order to pinpoint where their real strengths come from. Leveraging this information, we then proceed to boost the classification accuracy of shallow models to levels that rival deep neural networks. We introduce hybrid video classification architectures based on carefully designed unsupervised representations of handcrafted spatiotemporal features classified by supervised deep networks. We show in our experiments that our hybrid model combine the best of both worlds: it is data efficient (trained on 150 to 10,000 short clips) and yet improved significantly on the state of the art, including deep models trained on millions of manually labeled images and videos. In the second part of this research, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. It contains a total of 39,982 videos, with more than 1,000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We then introduce deep multi-task representation learning architectures to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, outperforming fine-tuning state-of-the-art unsupervised generative models of videos.  
  Address April 2018  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Naila Murray  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Sou2018 Serial 3127  
Permanent link to this record
 

 
Author Santiago Segui edit  openurl
  Title Contributions to the Diagnosis of Intestinal Motility by Automatic Image Analysis Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In the early twenty first century Given Imaging Ltd. presented wireless capsule endoscopy (WCE) as a new technological breakthrough that allowed the visualization of
the intestine by using a small, swallowed camera. This small size device was received
with a high enthusiasm within the medical community, and until now, it is still one
of the medical devices with the highest use growth rate. WCE can be used as a novel
diagnostic tool that presents several clinical advantages, since it is non-invasive and
at the same time it provides, for the first time, a full picture of the small bowel morphology, contents and dynamics. Since its appearance, the WCE has been used to
detect several intestinal dysfunctions such as: polyps, ulcers and bleeding. However,
the visual analysis of WCE videos presents an important drawback: the long time
required by the physicians for proper video visualization. In this sense and regarding
to this limitation, the development of computer aided systems is required for the extensive use of WCE in the medical community.
The work presented in this thesis is a set of contributions for the automatic image
analysis and computer-aided diagnosis of intestinal motility disorders using WCE.
Until now, the diagnosis of small bowel motility dysfunctions was basically performed
by invasive techniques such as the manometry test, which can only be conducted at
some referral centers around the world owing to the complexity of the procedure and
the medial expertise required in the interpretation of the results.
Our contributions are divided in three main blocks:
1. Image analysis by computer vision techniques to detect events in the endoluminal WCE scene. Several methods have been proposed to detect visual events
such as: intestinal contractions, intestinal content, tunnel and wrinkles;
2. Machine learning techniques for the analysis and the manipulation of the data
from WCE. These methods have been proposed in order to overcome the problems that the analysis of WCE presents such as: video acquisition cost, unlabeled data and large number of data;
3. Two different systems for the computer-aided diagnosis of intestinal motility
disorders using WCE. The first system presents a fully automatic method that
aids at discriminating healthy subjects from patients with severe intestinal motor disorders like pseudo-obstruction or food intolerance. The second system presents another automatic method that models healthy subjects and discriminate them from mild intestinal motility patients.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Vitria  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Seg2011 Serial 1836  
Permanent link to this record
 

 
Author Lichao Zhang edit  isbn
openurl 
  Title Towards end-to-end Networks for Visual Tracking in RGB and TIR Videos Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In the current work, we identify several problems of current tracking systems. The lack of large-scale labeled datasets hampers the usage of deep learning, especially end-to-end training, for tracking in TIR images. Therefore, many methods for tracking on TIR data are still based on hand-crafted features. This situation also happens in multi-modal tracking, e.g. RGB-T tracking. Another reason, which hampers the development of RGB-T tracking, is that there exists little research on the fusion mechanisms for combining information from RGB and TIR modalities. One of the crucial components of most trackers is the update module. For the currently existing end-to-end tracking architecture, e.g, Siamese trackers, the online model update is still not taken into consideration at the training stage. They use no-update or a linear update strategy during the inference stage. While such a hand-crafted approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update.

To address the data-scarcity for TIR and RGB-T tracking, we use image-to-image translation to generate a large-scale synthetic TIR dataset. This dataset allows us to perform end-to-end training for TIR tracking. Furthermore, we investigate several fusion mechanisms for RGB-T tracking. The multi-modal trackers are also trained in an end-to-end manner on the synthetic data. To improve the standard online update, we pose the updating step as an optimization problem which can be solved by training a neural network. Our approach thereby reduces the hand-crafted components in the tracking pipeline and sets a further step in the direction of a complete end-to-end trained tracking network which also considers updating during optimization.
 
  Address November 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Abel Gonzalez;Fahad Shahbaz Khan  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-1210011-1-9 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ Zha2019 Serial 3393  
Permanent link to this record
 

 
Author Naila Murray edit  openurl
  Title Predicting Saliency and Aesthetics in Images: A Bottom-up Perspective Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In Part 1 of the thesis, we hypothesize that salient and non-salient image regions can be estimated to be the regions which are enhanced or assimilated in standard low-level color image representations. We prove this hypothesis by adapting a low-level model of color perception into a saliency estimation model. This model shares the three main steps found in many successful models for predicting attention in a scene: convolution with a set of filters, a center-surround mechanism and spatial pooling to construct a saliency map. For such models, integrating spatial information and justifying the choice of various parameter values remain open problems. Our saliency model inherits a principled selection of parameters as well as an innate spatial pooling mechanism from the perception model on which it is based. This pooling mechanism has been fitted using psychophysical data acquired in color-luminance setting experiments. The proposed model outperforms the state-of-the-art at the task of predicting eye-fixations from two datasets. After demonstrating the effectiveness of our basic saliency model, we introduce an improved image representation, based on geometrical grouplets, that enhances complex low-level visual features such as corners and terminations, and suppresses relatively simpler features such as edges. With this improved image representation, the performance of our saliency model in predicting eye-fixations increases for both datasets.

In Part 2 of the thesis, we investigate the problem of aesthetic visual analysis. While a great deal of research has been conducted on hand-crafting image descriptors for aesthetics, little attention so far has been dedicated to the collection, annotation and distribution of ground truth data. Because image aesthetics is complex and subjective, existing datasets, which have few images and few annotations, have significant limitations. To address these limitations, we have introduced a new large-scale database for conducting Aesthetic Visual Analysis, which we call AVA. AVA contains more than 250,000 images, along with a rich variety of annotations. We investigate how the wealth of data in AVA can be used to tackle the challenge of understanding and assessing visual aesthetics by looking into several problems relevant for aesthetic analysis. We demonstrate that by leveraging the data in AVA, and using generic low-level features such as SIFT and color histograms, we can exceed state-of-the-art performance in aesthetic quality prediction tasks.

Finally, we entertain the hypothesis that low-level visual information in our saliency model can also be used to predict visual aesthetics by capturing local image characteristics such as feature contrast, grouping and isolation, characteristics thought to be related to universal aesthetic laws. We use the weighted center-surround responses that form the basis of our saliency model to create a feature vector that describes aesthetics. We also introduce a novel color space for fine-grained color representation. We then demonstrate that the resultant features achieve state-of-the-art performance on aesthetic quality classification.

As such, a promising contribution of this thesis is to show that several vision experiences – low-level color perception, visual saliency and visual aesthetics estimation – may be successfully modeled using a unified framework. This suggests a similar architecture in area V1 for both color perception and saliency and adds evidence to the hypothesis that visual aesthetics appreciation is driven in part by low-level cues.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Xavier Otazu;Maria Vanrell  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Mur2012 Serial 2212  
Permanent link to this record
 

 
Author Yi Xiao edit  isbn
openurl 
  Title Advancing Vision-based End-to-End Autonomous Driving Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) In autonomous driving, artificial intelligence (AI) processes the traffic environment to drive the vehicle to a desired destination. Currently, there are different paradigms that address the development of AI-enabled drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception, maneuver planning, and control. On the other hand, we find end-to-end driving approaches that attempt to learn the direct mapping of raw data from input sensors to vehicle control signals. The latter are relatively less studied but are gaining popularity as they are less demanding in terms of data labeling. Therefore, in this thesis, our goal is to investigate end-to-end autonomous driving.
We propose to evaluate three approaches to tackle the challenge of end-to-end
autonomous driving. First, we focus on the input, considering adding depth information as complementary to RGB data, in order to mimic the human being’s
ability to estimate the distance to obstacles. Notice that, in the real world, these depth maps can be obtained either from a LiDAR sensor, or a trained monocular
depth estimation module, where human labeling is not needed. Then, based on
the intuition that the latent space of end-to-end driving models encodes relevant
information for driving, we use it as prior knowledge for training an affordancebased driving model. In this case, the trained affordance-based model can achieve good performance while requiring less human-labeled data, and it can provide interpretability regarding driving actions. Finally, we present a new pure vision-based end-to-end driving model termed CIL++, which is trained by imitation learning.
CIL++ leverages modern best practices, such as a large horizontal field of view and
a self-attention mechanism, which are contributing to the agent’s understanding of
the driving scene and bringing a better imitation of human drivers. Using training
data without any human labeling, our model yields almost expert performance in
the CARLA NoCrash benchmark and could rival SOTA models that require large amounts of human-labeled data.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-4-6 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Xia2023 Serial 3964  
Permanent link to this record
 

 
Author Fei Yang edit  isbn
openurl 
  Title Towards Practical Neural Image Compression Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Images and videos are pervasive in our life and communication. With advances in smart and portable devices, high capacity communication networks and high definition cinema, image and video compression are more relevant than ever. Traditional block-based linear transform codecs such as JPEG, H.264/AVC or the recent H.266/VVC are carefully designed to meet not only the rate-distortion criteria, but also the practical requirements of applications.
Recently, a new paradigm based on deep neural networks (i.e., neural image/video compression) has become increasingly popular due to its ability to learn powerful nonlinear transforms and other coding tools directly from data instead of being crafted by humans, as was usual in previous coding formats. While achieving excellent rate-distortion performance, these approaches are still limited mostly to research environments due to heavy models and other practical limitations, such as being limited to function on a particular rate and due to high memory and computational cost. In this thesis, we study these practical limitations, and designing more practical neural image compression approaches.
After analyzing the differences between traditional and neural image compression, our first contribution is the modulated autoencoder (MAE), a framework that includes a mechanism to provide multiple rate-distortion options within a single model with comparable performance to independent models. In a second contribution, we propose the slimmable compressive autoencoder (SlimCAE), which in addition to variable rate, can optimize the complexity of the model and thus reduce significantly the memory and computational burden.
Modern generative models can learn custom image transformation directly from suitable datasets following encoder-decoder architectures, task known as image-to-image (I2I) translation. Building on our previous work, we study the problem of distributed I2I translation, where the latent representation is transmitted through a binary channel and decoded in a remote receiving side. We also propose a variant that can perform both translation and the usual autoencoding functionality.
Finally, we also consider neural video compression, where the autoencoder is typically augmented with temporal prediction via motion compensation. One of the main bottlenecks of that framework is the optical flow module that estimates the displacement to predict the next frame. Focusing on this module, we propose a method that improves the accuracy of the optical flow estimation and a simplified variant that reduces the computational cost.
Key words: neural image compression, neural video compression, optical flow, practical neural image compression, compressive autoencoders, image-to-image translation, deep learning.
 
  Address December 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Luis Herranz;Mikhail Mozerov;Yongmei Cheng  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-7-8 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Yan2021 Serial 3608  
Permanent link to this record
 

 
Author Marc Serra edit  isbn
openurl 
  Title Modeling, estimation and evaluation of intrinsic images considering color information Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Image values are the result of a combination of visual information coming from multiple sources. Recovering information from the multiple factors thatproduced an image seems a hard and ill-posed problem. However, it is important to observe that humans develop the ability to interpret images and recognize and isolate specific physical properties of the scene.

Images describing a single physical characteristic of an scene are called intrinsic images. These images would benefit most computer vision tasks which are often affected by the multiple complex effects that are usually found in natural images (e.g. cast shadows, specularities, interreflections...).

In this thesis we analyze the problem of intrinsic image estimation from different perspectives, including the theoretical formulation of the problem, the visual cues that can be used to estimate the intrinsic components and the evaluation mechanisms of the problem.
 
  Address September 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Robert Benavente;Olivier Penacchio  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-4-5 Medium  
  Area Expedition Conference  
  Notes CIC; 600.074 Approved no  
  Call Number Admin @ si @ Ser2015 Serial 2688  
Permanent link to this record
 

 
Author Eduard Vazquez edit  openurl
  Title Unsupervised image segmentation based on material reflectance description and saliency Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Image segmentations aims to partition an image into a set of non-overlapped regions, called segments. Despite the simplicity of the definition, image segmentation raises as a very complex problem in all its stages. The definition of segment is still unclear. When asking to a human to perform a segmentation, this person segments at different levels of abstraction. Some segments might be a single, well-defined texture whereas some others correspond with an object in the scene which might including multiple textures and colors. For this reason, segmentation is divided in bottom-up segmentation and top-down segmentation. Bottom up-segmentation is problem independent, that is, focused on general properties of the images such as textures or illumination. Top-down segmentation is a problem-dependent approach which looks for specific entities in the scene, such as known objects. This work is focused on bottom-up segmentation. Beginning from the analysis of the lacks of current methods, we propose an approach called RAD. Our approach overcomes the main shortcomings of those methods which use the physics of the light to perform the segmentation. RAD is a topological approach which describes a single-material reflectance. Afterwards, we cope with one of the main problems in image segmentation: non supervised adaptability to image content. To yield a non-supervised method, we use a model of saliency yet presented in this thesis. It computes the saliency of the chromatic transitions of an image by means of a statistical analysis of the images derivatives. This method of saliency is used to build our final approach of segmentation: spRAD. This method is a non-supervised segmentation approach. Our saliency approach has been validated with a psychophysical experiment as well as computationally, overcoming a state-of-the-art saliency method. spRAD also outperforms state-of-the-art segmentation techniques as results obtained with a widely-used segmentation dataset show  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Ramon Baldrich  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Vaz2011b Serial 1835  
Permanent link to this record
 

 
Author Sergio Vera edit  isbn
openurl 
  Title Anatomic Registration based on Medial Axis Parametrizations Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of di erent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to speci c anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at speci c locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the de nition of a depth coordinate. However, given that di erent methods for generation of medial surfaces generate di erent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Miguel Angel Gonzalez Ballester  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-8-3 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Ver2015 Serial 2708  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: