toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tadashi Araki; Sumit K. Banchhor; Narendra D. Londhe; Nobutaka Ikeda; Petia Radeva; Devarshi Shukla; Luca Saba; Antonella Balestrieri; Andrew Nicolaides; Shoaib Shafique; John R. Laird; Jasjit S. Suri edit  doi
openurl 
  Title Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos Type Journal Article
  Year 2016 Publication Journal of Medical Systems Abbreviated Journal JMS  
  Volume 40 Issue 3 Pages 51:1-51:20  
  Keywords Interventional cardiology; Atherosclerosis; Coronary arteries; IVUS; calcium volume; Soft computing; Performance Reliability; Accuracy  
  Abstract (down) Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm3, 27.79 ± 10.94 mm3, 46.44 ± 19.13 mm3 and 35.92 ± 16.44 mm3 respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student’s t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80 %. Out procedure and protocol is along the line with method previously published clinically.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @ ABL2016 Serial 2729  
Permanent link to this record
 

 
Author Clementine Decamps; Alexis Arnaud; Florent Petitprez; Mira Ayadi; Aurelia Baures; Lucile Armenoult; Sergio Escalera; Isabelle Guyon; Remy Nicolle; Richard Tomasini; Aurelien de Reynies; Jerome Cros; Yuna Blum; Magali Richard edit   pdf
url  openurl
  Title DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification Type Journal Article
  Year 2021 Publication BMC Bioinformatics Abbreviated Journal  
  Volume 22 Issue Pages 473  
  Keywords  
  Abstract (down) Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ DAP2021 Serial 3650  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan edit  openurl
  Title Coloring bag-of-words based image representations Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Put succinctly, the bag-of-words based image representation is the most successful approach for object and scene recognition. Within the bag-of-words framework the optimal fusion of multiple cues, such as shape, texture and color, still remains an active research domain. There exist two main approaches to combine color and shape information within the bag-of-words framework. The first approach called, early fusion, fuses color and shape at the feature level as a result of which a joint colorshape vocabulary is produced. The second approach, called late fusion, concatenates histogram representation of both color and shape, obtained independently. In the first part of this thesis, we analyze the theoretical implications of both early and late feature fusion. We demonstrate that both these approaches are suboptimal for a subset of object categories. Consequently, we propose a novel method for recognizing object categories when using multiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom-up and top-down attention maps. Subsequently, the color attention maps are used to modulate the weights of the shape features. Shape features are given more weight in regions with higher attention and vice versa. The approach is tested on several benchmark object recognition data sets and the results clearly demonstrate the effectiveness of our proposed method. In the second part of the thesis, we investigate the problem of obtaining compact spatial pyramid representations for object and scene recognition. Spatial pyramids have been successfully applied to incorporate spatial information into bag-of-words based image representation. However, a major drawback of spatial pyramids is that it leads to high dimensional image representations. We present a novel framework for obtaining compact pyramid representation. The approach reduces the size of a high dimensional pyramid representation upto an order of magnitude without any significant reduction in accuracy. Moreover, we also investigate the optimal combination of multiple features such as color and shape within the context of our compact pyramid representation. Finally, we describe a novel technique to build discriminative visual words from multiple cues learned independently from training images. To this end, we use an information theoretic vocabulary compression technique to find discriminative combinations of visual cues and the resulting visual vocabulary is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. The approach is tested on standard object recognition data sets. The results obtained clearly demonstrate the effectiveness of our approach.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Joost Van de Weijer;Maria Vanrell  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Kha2011 Serial 1838  
Permanent link to this record
 

 
Author Jordi Gonzalez; Thomas B. Moeslund; Liang Wang edit   pdf
doi  openurl
  Title Semantic Understanding of Human Behaviors in Image Sequences: From video-surveillance to video-hermeneutics Type Journal Article
  Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 116 Issue 3 Pages 305–306  
  Keywords  
  Abstract (down) Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries.Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound (IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations.Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall.Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ GMW2012 Serial 2005  
Permanent link to this record
 

 
Author Francesco Ciompi; Simone Balocco; Juan Rigla; Xavier Carrillo; Josefina Mauri; Petia Radeva edit  doi
openurl 
  Title Computer-Aided Detection of Intra-Coronary Stent in Intravascular Ultrasound Sequences Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal MP  
  Volume 43 Issue 10 Pages  
  Keywords  
  Abstract (down) Purpose: An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery during Percutaneous Coronary Intervention (PCI), in order to prevent acute vessel occlusion. The identication of struts location and the denition of the stent shape are relevant for PCI planning 15 and for patient follow-up. We present a fully-automatic framework for Computer-Aided Detection
(CAD) of intra-coronary stents in Intravascular Ultrasound (IVUS) image sequences. The CAD system is able to detect stent struts and estimate the stent shape.

Methods: The proposed CAD uses machine learning to provide a comprehensive interpretation of the local structure of the vessel by means of semantic classication. The output of the classication 20 stage is then used to detect struts and to estimate the stent shape. The proposed approach is validated using a multi-centric data-set of 1,015 images from 107 IVUS sequences containing both metallic and bio-absorbable stents.

Results: The method was able to detect structs in both metallic stents with an overall F-measure of 77.7% and a mean distance of 0.15 mm from manually annotated struts, and in bio-absorbable 25 stents with an overall F-measure of 77.4% and a mean distance of 0.09 mm from manually annotated struts.

Conclusions: The results are close to the inter-observer variability and suggest that the system has the potential of being used as method for aiding percutaneous interventions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CBR2016 Serial 2819  
Permanent link to this record
 

 
Author Debora Gil; Ruth Aris; Agnes Borras; Esmitt Ramirez; Rafael Sebastian; Mariano Vazquez edit   pdf
doi  openurl
  Title Influence of fiber connectivity in simulations of cardiac biomechanics Type Journal Article
  Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 14 Issue 1 Pages 63–72  
  Keywords Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity  
  Abstract (down) PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.

METHODS:
We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).

RESULTS:
The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.

CONCLUSIONS:
Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 601.323; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GAB2019a Serial 3133  
Permanent link to this record
 

 
Author Carles Sanchez; Jorge Bernal; F. Javier Sanchez; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit  openurl
  Title Towards On-line Quantification of Tracheal Stenosis from Videobronchoscopy Type Conference Article
  Year 2015 Publication 6th International Conference on Information Processing in Computer-Assisted Interventions IPCAI2015 Abbreviated Journal  
  Volume 10 Issue 6 Pages 935-945  
  Keywords  
  Abstract (down) PURPOSE:
Lack of objective measurement of tracheal obstruction degree has a negative impact on the chosen treatment prone to lead to unnecessary repeated explorations and other scanners. Accurate computation of tracheal stenosis in videobronchoscopy would constitute a breakthrough for this noninvasive technique and a reduction in operation cost for the public health service.
METHODS:
Stenosis calculation is based on the comparison of the region delimited by the lumen in an obstructed frame and the region delimited by the first visible ring in a healthy frame. We propose a parametric strategy for the extraction of lumen and tracheal ring regions based on models of their geometry and appearance that guide a deformable model. To ensure a systematic applicability, we present a statistical framework to choose optimal parametric values and a strategy to choose the frames that minimize the impact of scope optical distortion.
RESULTS:
Our method has been tested in 40 cases covering different stenosed tracheas. Experiments report a non- clinically relevant [Formula: see text] of discrepancy in the calculated stenotic area and a computational time allowing online implementation in the operating room.
CONCLUSIONS:
Our methodology allows reliable measurements of airway narrowing in the operating room. To fully assess its clinical impact, a prospective clinical trial should be done.
 
  Address Barcelona; Spain; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IPCAI  
  Notes IAM; MV; 600.075 Approved no  
  Call Number Admin @ si @ SBS2015b Serial 2613  
Permanent link to this record
 

 
Author Simone Balocco; O. Camara; E. Vivas; T. Sola; L. Guimaraens; H. A. van Andel; C. B. Majoie; J. M. Pozo; B. H. Bijnens; Alejandro F. Frangi edit  url
openurl 
  Title Feasibility of Estimating Regional Mechanical Properties of Cerebral Aneurysms In Vivo Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal MEDPHYS  
  Volume 37 Issue 4 Pages 1689–1706  
  Keywords  
  Abstract (down) PURPOSE:
In this article, the authors studied the feasibility of estimating regional mechanical properties in cerebral aneurysms, integrating information extracted from imaging and physiological data with generic computational models of the arterial wall behavior.
METHODS:
A data assimilation framework was developed to incorporate patient-specific geometries into a given biomechanical model, whereas wall motion estimates were obtained from applying registration techniques to a pair of simulated MR images and guided the mechanical parameter estimation. A simple incompressible linear and isotropic Hookean model coupled with computational fluid-dynamics was employed as a first approximation for computational purposes. Additionally, an automatic clustering technique was developed to reduce the number of parameters to assimilate at the optimization stage and it considerably accelerated the convergence of the simulations. Several in silico experiments were designed to assess the influence of aneurysm geometrical characteristics and the accuracy of wall motion estimates on the mechanical property estimates. Hence, the proposed methodology was applied to six real cerebral aneurysms and tested against a varying number of regions with different elasticity, different mesh discretization, imaging resolution, and registration configurations.
RESULTS:
Several in silico experiments were conducted to investigate the feasibility of the proposed workflow, results found suggesting that the estimation of the mechanical properties was mainly influenced by the image spatial resolution and the chosen registration configuration. According to the in silico experiments, the minimal spatial resolution needed to extract wall pulsation measurements with enough accuracy to guide the proposed data assimilation framework was of 0.1 mm.
CONCLUSIONS:
Current routine imaging modalities do not have such a high spatial resolution and therefore the proposed data assimilation framework cannot currently be used on in vivo data to reliably estimate regional properties in cerebral aneurysms. Besides, it was observed that the incorporation of fluid-structure interaction in a biomechanical model with linear and isotropic material properties did not have a substantial influence in the final results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BCV2010 Serial 1313  
Permanent link to this record
 

 
Author Simone Balocco; Francesco Ciompi; Juan Rigla; Xavier Carrillo; Josefina Mauri; Petia Radeva edit  url
doi  openurl
  Title Assessment of intracoronary stent location and extension in intravascular ultrasound sequences Type Journal Article
  Year 2019 Publication Medical Physics Abbreviated Journal MEDPHYS  
  Volume 46 Issue 2 Pages 484-493  
  Keywords IVUS; malapposition; stent; ultrasound  
  Abstract (down) PURPOSE:

An intraluminal coronary stent is a metal scaffold deployed in a stenotic artery during percutaneous coronary intervention (PCI). In order to have an effective deployment, a stent should be optimally placed with regard to anatomical structures such as bifurcations and stenoses. Intravascular ultrasound (IVUS) is a catheter-based imaging technique generally used for PCI guiding and assessing the correct placement of the stent. A novel approach that automatically detects the boundaries and the position of the stent along the IVUS pullback is presented. Such a technique aims at optimizing the stent deployment.
METHODS:

The method requires the identification of the stable frames of the sequence and the reliable detection of stent struts. Using these data, a measure of likelihood for a frame to contain a stent is computed. Then, a robust binary representation of the presence of the stent in the pullback is obtained applying an iterative and multiscale quantization of the signal to symbols using the Symbolic Aggregate approXimation algorithm.
RESULTS:

The technique was extensively validated on a set of 103 IVUS of sequences of in vivo coronary arteries containing metallic and bioabsorbable stents acquired through an international multicentric collaboration across five clinical centers. The method was able to detect the stent position with an overall F-measure of 86.4%, a Jaccard index score of 75% and a mean distance of 2.5 mm from manually annotated stent boundaries, and in bioabsorbable stents with an overall F-measure of 88.6%, a Jaccard score of 77.7 and a mean distance of 1.5 mm from manually annotated stent boundaries. Additionally, a map indicating the distance between the lumen and the stent along the pullback is created in order to show the angular sectors of the sequence in which the malapposition is present.
CONCLUSIONS:

Results obtained comparing the automatic results vs the manual annotation of two observers shows that the method approaches the interobserver variability. Similar performances are obtained on both metallic and bioabsorbable stents, showing the flexibility and robustness of the method.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ BCR2019 Serial 3231  
Permanent link to this record
 

 
Author Sumit K. Banchhor; Narendra D. Londhe; Tadashi Araki; Luca Saba; Petia Radeva; Narendra N. Khanna; Jasjit S. Suri edit  url
openurl 
  Title Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review. Type Journal Article
  Year 2018 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 101 Issue Pages 184-198  
  Keywords Heart disease; Stroke; Atherosclerosis; Intravascular; Coronary; Carotid; Calcium; Morphology; Risk stratification  
  Abstract (down) Purpose of review

Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke. Typically, atherosclerotic calcium is found during the mature stage of the atherosclerosis disease. It is therefore often a challenge to identify and quantify the calcium. This is due to the presence of multiple components of plaque buildup in the arterial walls. The American College of Cardiology/American Heart Association guidelines point to the importance of calcium in the coronary and carotid arteries and further recommend its quantification for the prevention of heart disease. It is therefore essential to stratify the CVD risk of the patient into low- and high-risk bins.
Recent finding

Calcium formation in the artery walls is multifocal in nature with sizes at the micrometer level. Thus, its detection requires high-resolution imaging. Clinical experience has shown that even though optical coherence tomography offers better resolution, intravascular ultrasound still remains an important imaging modality for coronary wall imaging. For a computer-based analysis system to be complete, it must be scientifically and clinically validated. This study presents a state-of-the-art review (condensation of 152 publications after examining 200 articles) covering the methods for calcium detection and its quantification for coronary and carotid arteries, the pros and cons of these methods, and the risk stratification strategies. The review also presents different kinds of statistical models and gold standard solutions for the evaluation of software systems useful for calcium detection and quantification. Finally, the review concludes with a possible vision for designing the next-generation system for better clinical outcomes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ BLA2018 Serial 3188  
Permanent link to this record
 

 
Author Michal Drozdzal; Petia Radeva; Santiago Segui; Laura Igual; Carolina Malagelada; Fernando Azpiroz; Jordi Vitria edit  openurl
  Title System and method for automatic detection of in vivo contraction video sequences Type Patent
  Year 2012 Publication US20120057766 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Publication date: 2012/3/8  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR;MV Approved no  
  Call Number Admin @ si @ DRS2012b Serial 2071  
Permanent link to this record
 

 
Author Kaida Xiao; Sophie Wuerger; Chenyang Fu; Dimosthenis Karatzas edit  doi
openurl 
  Title Unique Hue Data for Colour Appearance Models. Part i: Loci of Unique Hues and Hue Uniformity Type Journal Article
  Year 2011 Publication Color Research & Application Abbreviated Journal CRA  
  Volume 36 Issue 5 Pages 316-323  
  Keywords unique hues; colour appearance models; CIECAM02; hue uniformity  
  Abstract (down) Psychophysical experiments were conducted to assess unique hues on a CRT display for a large sample of colour-normal observers (n 1⁄4 185). These data were then used to evaluate the most commonly used colour appear- ance model, CIECAM02, by transforming the CIEXYZ tris- timulus values of the unique hues to the CIECAM02 colour appearance attributes, lightness, chroma and hue angle. We report two findings: (1) the hue angles derived from our unique hue data are inconsistent with the commonly used Natural Color System hues that are incorporated in the CIECAM02 model. We argue that our predicted unique hue angles (derived from our large dataset) provide a more reliable standard for colour management applications when the precise specification of these salient colours is im- portant. (2) We test hue uniformity for CIECAM02 in all four unique hues and show significant disagreements for all hues, except for unique red which seems to be invariant under lightness changes. Our dataset is useful to improve the CIECAM02 model as it provides reliable data for benchmarking.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Periodicals Inc Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ XWF2011 Serial 1816  
Permanent link to this record
 

 
Author Francisco Javier Orozco; Xavier Roca; Jordi Gonzalez edit  url
doi  openurl
  Title Real-Time Gaze Tracking with Appearance-Based Models Type Journal Article
  Year 2008 Publication Machine Vision Applications Abbreviated Journal MVAP  
  Volume 20 Issue 6 Pages 353-364  
  Keywords Keywords Eyelid and iris tracking, Appearance models, Blinking, Iris saccade, Real-time gaze tracking  
  Abstract (down) Psychological evidence has emphasized the importance of eye gaze analysis in human computer interaction and emotion interpretation. To this end, current image analysis algorithms take into consideration eye-lid and iris motion detection using colour information and edge detectors. However, eye movement is fast and and hence difficult to use to obtain a precise and robust tracking. Instead, our
method proposed to describe eyelid and iris movements as continuous variables using appearance-based tracking. This approach combines the strengths of adaptive appearance models, optimization methods and backtracking techniques.Thus,
in the proposed method textures are learned on-line from near frontal images and illumination changes, occlusions and fast movements are managed. The method achieves real-time performance by combining two appearance-based trackers to a
backtracking algorithm for eyelid estimation and another for iris estimation. These contributions represent a significant advance towards a reliable gaze motion description for HCI and expression analysis, where the strength of complementary
methodologies are combined to avoid using high quality images, colour information, texture training, camera settings and other time-consuming processes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number ISE @ ise @ ORG2008 Serial 972  
Permanent link to this record
 

 
Author Francisco Javier Orozco edit  isbn
openurl 
  Title Human Emotion Evaluation on Facial Image Sequences Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Psychological evidence has emphasized the importance of affective behaviour understanding due to its high impact in nowadays interaction humans and computers. All
type of affective and behavioural patterns such as gestures, emotions and mental
states are highly displayed through the face, head and body. Therefore, this thesis is
focused to analyse affective behaviours on head and face. To this end, head and facial
movements are encoded by using appearance based tracking methods. Specifically,
a wise combination of deformable models captures rigid and non-rigid movements of
different kinematics; 3D head pose, eyebrows, mouth, eyelids and irises are taken into
account as basis for extracting features from databases of video sequences. This approach combines the strengths of adaptive appearance models, optimization methods
and backtracking techniques.
For about thirty years, computer sciences have addressed the investigation on
human emotions to the automatic recognition of six prototypic emotions suggested
by Darwin and systematized by Paul Ekman in the seventies. The Facial Action
Coding System (FACS) which uses discrete movements of the face (called Action
units or AUs) to code the six facial emotions named anger, disgust, fear, happy-Joy,
sadness and surprise. However, human emotions are much complex patterns that
have not received the same attention from computer scientists.
Simon Baron-Cohen proposed a new taxonomy of emotions and mental states
without a system coding of the facial actions. These 426 affective behaviours are
more challenging for the understanding of human emotions. Beyond of classically
classifying the six basic facial expressions, more subtle gestures, facial actions and
spontaneous emotions are considered here. By assessing confidence on the recognition
results, exploring spatial and temporal relationships of the features, some methods are
combined and enhanced for developing new taxonomy of expressions and emotions.
The objective of this dissertation is to develop a computer vision system, including both facial feature extraction, expression recognition and emotion understanding
by building a bottom-up reasoning process. Building a detailed taxonomy of human
affective behaviours is an interesting challenge for head-face-based image analysis
methods. In this paper, we exploit the strengths of Canonical Correlation Analysis
(CCA) to enhance an on-line head-face tracker. A relationship between head pose and
local facial movements is studied according to their cognitive interpretation on affective expressions and emotions. Active Shape Models are synthesized for AAMs based
on CCA-regression. Head pose and facial actions are fused into a maximally correlated space in order to assess expressiveness, confidence and classification in a CBR system. The CBR solutions are also correlated to the cognitive features, which allow
avoiding exhaustive search when recognizing new head-face features. Subsequently,
Support Vector Machines (SVMs) and Bayesian Networks are applied for learning the
spatial relationships of facial expressions. Similarly, the temporal evolution of facial
expressions, emotion and mental states are analysed based on Factorized Dynamic
Bayesian Networks (FaDBN).
As results, the bottom-up system recognizes six facial expressions, six basic emotions and six mental states, plus enhancing this categorization with confidence assessment at each level, intensity of expressions and a complete taxonomy
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-936529-3-7 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Oro2010 Serial 1335  
Permanent link to this record
 

 
Author Gabriel Villalonga; Antonio Lopez edit   pdf
doi  openurl
  Title Co-Training for On-Board Deep Object Detection Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume Issue Pages 194441 - 194456  
  Keywords  
  Abstract (down) Providing ground truth supervision to train visual models has been a bottleneck over the years, exacerbated by domain shifts which degenerate the performance of such models. This was the case when visual tasks relied on handcrafted features and shallow machine learning and, despite its unprecedented performance gains, the problem remains open within the deep learning paradigm due to its data-hungry nature. Best performing deep vision-based object detectors are trained in a supervised manner by relying on human-labeled bounding boxes which localize class instances (i.e. objects) within the training images. Thus, object detection is one of such tasks for which human labeling is a major bottleneck. In this article, we assess co-training as a semi-supervised learning method for self-labeling objects in unlabeled images, so reducing the human-labeling effort for developing deep object detectors. Our study pays special attention to a scenario involving domain shift; in particular, when we have automatically generated virtual-world images with object bounding boxes and we have real-world images which are unlabeled. Moreover, we are particularly interested in using co-training for deep object detection in the context of driver assistance systems and/or self-driving vehicles. Thus, using well-established datasets and protocols for object detection in these application contexts, we will show how co-training is a paradigm worth to pursue for alleviating object labeling, working both alone and together with task-agnostic domain adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ ViL2020 Serial 3488  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: