|   | 
Details
   web
Records Links
Author C. Alejandro Parraga; Ramon Baldrich; Maria Vanrell edit  isbn
openurl 
Title Accurate Mapping of Natural Scenes Radiance to Cone Activation Space: A New Image Dataset Type Conference Article
Year 2010 Publication 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science Abbreviated Journal  
Volume Issue Pages 50–57  
Keywords  
Abstract (up) The characterization of trichromatic cameras is usually done in terms of a device-independent color space, such as the CIE 1931 XYZ space. This is indeed convenient since it allows the testing of results against colorimetric measures. We have characterized our camera to represent human cone activation by mapping the camera sensor's (RGB) responses to human (LMS) through a polynomial transformation, which can be “customized” according to the types of scenes we want to represent. Here we present a method to test the accuracy of the camera measures and a study on how the choice of training reflectances for the polynomial may alter the results.  
Address Joensuu, Finland  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 9781617388897 Medium  
Area Expedition Conference CGIV/MCS  
Notes CIC Approved no  
Call Number CAT @ cat @ PBV2010a Serial 1322  
Permanent link to this record
 

 
Author Joost Van de Weijer; Shida Beigpour edit   pdf
url  isbn
openurl 
Title The Dichromatic Reflection Model: Future Research Directions and Applications Type Conference Article
Year 2011 Publication International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
Volume Issue Pages  
Keywords dblp  
Abstract (up) The dichromatic reflection model (DRM) predicts that color distributions form a parallelogram in color space, whose shape is defined by the body reflectance and the illuminant color. In this paper we resume the assumptions which led to the DRM and shortly recall two of its main applications domains: color image segmentation and photometric invariant feature computation. After having introduced the model we discuss several limitations of the theory, especially those which are raised once working on real-world uncalibrated images. In addition, we summerize recent extensions of the model which allow to handle more complicated light interactions. Finally, we suggest some future research directions which would further extend its applicability.  
Address Algarve, Portugal  
Corporate Author Thesis  
Publisher SciTePress Place of Publication Editor Mestetskiy, Leonid and Braz, José  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 978-989-8425-47-8 Medium  
Area Expedition Conference VISIGRAPP  
Notes CIC Approved no  
Call Number Admin @ si @ WeB2011 Serial 1778  
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell; Ramon Baldrich edit  doi
openurl 
Title Color Constancy Algorithms: Psychophysical Evaluation on a New Dataset Type Journal Article
Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal  
Volume 53 Issue 3 Pages 031105–9  
Keywords  
Abstract (up) The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than a half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant variations of the scene.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number CAT @ cat @ VPV2009a Serial 1171  
Permanent link to this record
 

 
Author Xavier Boix; Josep M. Gonfaus; Joost Van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez edit   pdf
url  doi
openurl 
Title Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation Type Journal Article
Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
Volume 96 Issue 1 Pages 83-102  
Keywords  
Abstract (up) The Hierarchical Conditional Random Field(HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales.
At higher scales in the image, this representation yields an oversimpli ed model since multiple classes can be reasonably expected to appear within large regions. This simpli ed model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations of classes. We also propose an e ective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-21.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0920-5691 ISBN Medium  
Area Expedition Conference  
Notes ISE;CIC;ADAS Approved no  
Call Number Admin @ si @ BGW2012 Serial 1718  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell; Luis A Alexandre; G. Arias edit   pdf
url  openurl
Title Understanding trained CNNs by indexing neuron selectivity Type Journal Article
Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
Volume 136 Issue Pages 318-325  
Keywords  
Abstract (up) The impressive performance of Convolutional Neural Networks (CNNs) when solving different vision problems is shadowed by their black-box nature and our consequent lack of understanding of the representations they build and how these representations are organized. To help understanding these issues, we propose to describe the activity of individual neurons by their Neuron Feature visualization and quantify their inherent selectivity with two specific properties. We explore selectivity indexes for: an image feature (color); and an image label (class membership). Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties. It helps to find color selective neurons, such as a red-mushroom neuron in layer Conv4 or class selective neurons such as dog-face neurons in layer Conv5 in VGG-M, and establishes a methodology to derive other selectivity properties. Indexing on neuron selectivity can statistically draw how features and classes are represented through layers in a moment when the size of trained nets is growing and automatic tools to index neurons can be helpful.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.087; 600.140; 600.118 Approved no  
Call Number Admin @ si @ RVL2019 Serial 3310  
Permanent link to this record
 

 
Author Bojana Gajic; Eduard Vazquez; Ramon Baldrich edit  url
openurl 
Title Evaluation of Deep Image Descriptors for Texture Retrieval Type Conference Article
Year 2017 Publication Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017) Abbreviated Journal  
Volume Issue Pages 251-257  
Keywords Texture Representation; Texture Retrieval; Convolutional Neural Networks; Psychophysical Evaluation  
Abstract (up) The increasing complexity learnt in the layers of a Convolutional Neural Network has proven to be of great help for the task of classification. The topic has received great attention in recently published literature.
Nonetheless, just a handful of works study low-level representations, commonly associated with lower layers. In this paper, we explore recent findings which conclude, counterintuitively, the last layer of the VGG convolutional network is the best to describe a low-level property such as texture. To shed some light on this issue, we are proposing a psychophysical experiment to evaluate the adequacy of different layers of the VGG network for texture retrieval. Results obtained suggest that, whereas the last convolutional layer is a good choice for a specific task of classification, it might not be the best choice as a texture descriptor, showing a very poor performance on texture retrieval. Intermediate layers show the best performance, showing a good combination of basic filters, as in the primary visual cortex, and also a degree of higher level information to describe more complex textures.
 
Address Porto, Portugal; 27 February – 1 March 2017  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference VISIGRAPP  
Notes CIC; 600.087 Approved no  
Call Number Admin @ si @ Serial 3710  
Permanent link to this record
 

 
Author Maria Vanrell; Naila Murray; Robert Benavente; C. Alejandro Parraga; Xavier Otazu; Ramon Baldrich edit   pdf
url  isbn
openurl 
Title Perception Based Representations for Computational Colour Type Conference Article
Year 2011 Publication 3rd International Workshop on Computational Color Imaging Abbreviated Journal  
Volume 6626 Issue Pages 16-30  
Keywords colour perception, induction, naming, psychophysical data, saliency, segmentation  
Abstract (up) The perceived colour of a stimulus is dependent on multiple factors stemming out either from the context of the stimulus or idiosyncrasies of the observer. The complexity involved in combining these multiple effects is the main reason for the gap between classical calibrated colour spaces from colour science and colour representations used in computer vision, where colour is just one more visual cue immersed in a digital image where surfaces, shadows and illuminants interact seemingly out of control. With the aim to advance a few steps towards bridging this gap we present some results on computational representations of colour for computer vision. They have been developed by introducing perceptual considerations derived from the interaction of the colour of a point with its context. We show some techniques to represent the colour of a point influenced by assimilation and contrast effects due to the image surround and we show some results on how colour saliency can be derived in real images. We outline a model for automatic assignment of colour names to image points directly trained on psychophysical data. We show how colour segments can be perceptually grouped in the image by imposing shading coherence in the colour space.  
Address Milan, Italy  
Corporate Author Thesis  
Publisher Springer-Verlag Place of Publication Editor Raimondo Schettini, Shoji Tominaga, Alain Trémeau  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title LNCS  
Series Volume Series Issue Edition  
ISSN ISBN 978-3-642-20403-6 Medium  
Area Expedition Conference CCIW  
Notes CIC Approved no  
Call Number Admin @ si @ VMB2011 Serial 1733  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Fufu Fang edit   pdf
doi  openurl
Title The Discrete Cosine Maximum Ignorance Assumption Type Conference Article
Year 2021 Publication 29th Color and Imaging Conference Abbreviated Journal  
Volume Issue Pages 13-18  
Keywords  
Abstract (up) the performance of colour correction algorithms are dependent on the reflectance sets used. Sometimes, when the testing reflectance set is changed the ranking of colour correction algorithms also changes. To remove dependence on dataset we can
make assumptions about the set of all possible reflectances. In the Maximum Ignorance with Positivity (MIP) assumption we assume that all reflectances with per wavelength values between 0 and 1 are equally likely. A weakness in the MIP is that it fails to take into account the correlation of reflectance functions between
wavelengths (many of the assumed reflectances are, in reality, not possible).
In this paper, we take the view that the maximum ignorance assumption has merit but, hitherto it has been calculated with respect to the wrong coordinate basis. Here, we propose the Discrete Cosine Maximum Ignorance assumption (DCMI), where
all reflectances that have coordinates between max and min bounds in the Discrete Cosine Basis coordinate system are equally likely.
Here, the correlation between wavelengths is encoded and this results in the set of all plausible reflectances ’looking like’ typical reflectances that occur in nature. This said the DCMI model is also a superset of all measured reflectance sets.
Experiments show that, in colour correction, adopting the DCMI results in similar colour correction performance as using a particular reflectance set.
 
Address Virtual; November 2021  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CIC  
Notes CIC Approved no  
Call Number FVF2021 Serial 3596  
Permanent link to this record
 

 
Author Olivier Penacchio; C. Alejandro Parraga edit  url
openurl 
Title What is the best criterion for an efficient design of retinal photoreceptor mosaics? Type Journal Article
Year 2011 Publication Perception Abbreviated Journal PER  
Volume 40 Issue Pages 197  
Keywords  
Abstract (up) The proportions of L, M and S photoreceptors in the primate retina are arguably determined by evolutionary pressure and the statistics of the visual environment. Two information theory-based approaches have been recently proposed for explaining the asymmetrical spatial densities of photoreceptors in humans. In the first approach Garrigan et al (2010 PLoS ONE 6 e1000677), a model for computing the information transmitted by cone arrays which considers the differential blurring produced by the long-wavelength accommodation of the eye’s lens is proposed. Their results explain the sparsity of S-cones but the optimum depends weakly on the L:M cone ratio. In the second approach (Penacchio et al, 2010 Perception 39 ECVP Supplement, 101), we show that human cone arrays make the visual representation scale-invariant, allowing the total entropy of the signal to be preserved while decreasing individual neurons’ entropy in further retinotopic representations. This criterion provides a thorough description of the distribution of L:M cone ratios and does not depend on differential blurring of the signal by the lens. Here, we investigate the similarities and differences of both approaches when applied to the same database. Our results support a 2-criteria optimization in the space of cone ratios whose components are arguably important and mostly unrelated.
[This work was partially funded by projects TIN2010-21771-C02-1 and Consolider-Ingenio 2010-CSD2007-00018 from the Spanish MICINN. CAP was funded by grant RYC-2007-00484]
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ PeP2011a Serial 1719  
Permanent link to this record
 

 
Author Eduard Vazquez; Ramon Baldrich; Joost Van de Weijer; Maria Vanrell edit   pdf
url  doi
openurl 
Title Describing Reflectances for Colour Segmentation Robust to Shadows, Highlights and Textures Type Journal Article
Year 2011 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
Volume 33 Issue 5 Pages 917-930  
Keywords  
Abstract (up) The segmentation of a single material reflectance is a challenging problem due to the considerable variation in image measurements caused by the geometry of the object, shadows, and specularities. The combination of these effects has been modeled by the dichromatic reflection model. However, the application of the model to real-world images is limited due to unknown acquisition parameters and compression artifacts. In this paper, we present a robust model for the shape of a single material reflectance in histogram space. The method is based on a multilocal creaseness analysis of the histogram which results in a set of ridges representing the material reflectances. The segmentation method derived from these ridges is robust to both shadow, shading and specularities, and texture in real-world images. We further complete the method by incorporating prior knowledge from image statistics, and incorporate spatial coherence by using multiscale color contrast information. Results obtained show that our method clearly outperforms state-of-the-art segmentation methods on a widely used segmentation benchmark, having as a main characteristic its excellent performance in the presence of shadows and highlights at low computational cost.  
Address Los Alamitos; CA; USA;  
Corporate Author Thesis  
Publisher IEEE Computer Society Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0162-8828 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VBW2011 Serial 1715  
Permanent link to this record
 

 
Author C. Alejandro Parraga edit  doi
isbn  openurl
Title Color Vision, Computational Methods for Type Book Chapter
Year 2014 Publication Encyclopedia of Computational Neuroscience Abbreviated Journal  
Volume Issue Pages 1-11  
Keywords Color computational vision; Computational neuroscience of color  
Abstract (up) The study of color vision has been aided by a whole battery of computational methods that attempt to describe the mechanisms that lead to our perception of colors in terms of the information-processing properties of the visual system. Their scope is highly interdisciplinary, linking apparently dissimilar disciplines such as mathematics, physics, computer science, neuroscience, cognitive science, and psychology. Since the sensation of color is a feature of our brains, computational approaches usually include biological features of neural systems in their descriptions, from retinal light-receptor interaction to subcortical color opponency, cortical signal decoding, and color categorization. They produce hypotheses that are usually tested by behavioral or psychophysical experiments.  
Address  
Corporate Author Thesis  
Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor Dieter Jaeger; Ranu Jung  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 978-1-4614-7320-6 Medium  
Area Expedition Conference  
Notes CIC; 600.074 Approved no  
Call Number Admin @ si @ Par2014 Serial 2512  
Permanent link to this record
 

 
Author Jordi Roca; C. Alejandro Parraga; Maria Vanrell edit  url
openurl 
Title Categorical Focal Colours are Structurally Invariant Under Illuminant Changes Type Conference Article
Year 2011 Publication European Conference on Visual Perception Abbreviated Journal  
Volume Issue Pages 196  
Keywords  
Abstract (up) The visual system perceives the colour of surfaces approximately constant under changes of illumination. In this work, we investigate how stable is the perception of categorical \“focal\” colours and their interrelations with varying illuminants and simple chromatic backgrounds. It has been proposed that best examples of colour categories across languages cluster in small regions of the colour space and are restricted to a set of 11 basic terms (Kay and Regier, 2003 Proceedings of the National Academy of Sciences of the USA 100 9085\–9089). Following this, we developed a psychophysical paradigm that exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. The experiment was run on a CRT monitor (inside a dark room) under various simulated illuminants. We modelled the recorded data for each subject and adapted state as a 3D interconnected structure (graph) in Lab space. The graph nodes were the subject\’s focal colours at each adaptation state. The model allowed us to get a better distance measure between focal structures under different illuminants. We found that perceptual focal structures tend to be preserved better than the structures of the physical \“ideal\” colours under illuminant changes.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Perception 40 Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ECVP  
Notes CIC Approved no  
Call Number Admin @ si @ RPV2011 Serial 1867  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
Title Spectral sharpening by spherical sampling Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 29 Issue 7 Pages 1199-1210  
Keywords  
Abstract (up) There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1084-7529 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Naila Murray; Sandra Skaff; Luca Marchesotti; Florent Perronnin edit   pdf
url  doi
isbn  openurl
Title Towards Automatic Concept Transfer Type Conference Article
Year 2011 Publication Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering Abbreviated Journal  
Volume Issue Pages 167.176  
Keywords chromatic modeling, color concepts, color transfer, concept transfer  
Abstract (up) This paper introduces a novel approach to automatic concept transfer; examples of concepts are “romantic”, “earthy”, and “luscious”. The approach modifies the color content of an input image given only a concept specified by a user in natural language, thereby requiring minimal user input. This approach is particularly useful for users who are aware of the message they wish to convey in the transferred image while being unsure of the color combination needed to achieve the corresponding transfer. The user may adjust the intensity level of the concept transfer to his/her liking with a single parameter. The proposed approach uses a convex clustering algorithm, with a novel pruning mechanism, to automatically set the complexity of models of chromatic content. It also uses the Earth-Mover's Distance to compute a mapping between the models of the input image and the target chromatic concept. Results show that our approach yields transferred images which effectively represent concepts, as confirmed by a user study.  
Address  
Corporate Author Thesis  
Publisher ACM Press Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 978-1-4503-0907-3 Medium  
Area Expedition Conference NPAR  
Notes CIC Approved no  
Call Number Admin @ si @ MSM2011 Serial 1866  
Permanent link to this record
 

 
Author Naila Murray; Sandra Skaff; Luca Marchesotti; Florent Perronnin edit  url
openurl 
Title Towards automatic and flexible concept transfer Type Journal Article
Year 2012 Publication Computers and Graphics Abbreviated Journal CG  
Volume 36 Issue 6 Pages 622–634  
Keywords  
Abstract (up) This paper introduces a novel approach to automatic, yet flexible, image concepttransfer; examples of concepts are “romantic”, “earthy”, and “luscious”. The presented method modifies the color content of an input image given only a concept specified by a user in natural language, thereby requiring minimal user input. This method is particularly useful for users who are aware of the message they wish to convey in the transferred image while being unsure of the color combination needed to achieve the corresponding transfer. Our framework is flexible for two reasons. First, the user may select one of two modalities to map input image chromaticities to target concept chromaticities depending on the level of photo-realism required. Second, the user may adjust the intensity level of the concepttransfer to his/her liking with a single parameter. The proposed method uses a convex clustering algorithm, with a novel pruning mechanism, to automatically set the complexity of models of chromatic content. Results show that our approach yields transferred images which effectively represent concepts as confirmed by a user study.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0097-8493 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ MSM2012 Serial 2002  
Permanent link to this record
 

 
Author Francesc Tous; Agnes Borras; Robert Benavente; Ramon Baldrich; Maria Vanrell; Josep Llados edit   pdf
openurl 
Title Textual Descriptors for browsing people by visual appearence. Type Conference Article
Year 2002 Publication 5è. Congrés Català d’Intel·ligència Artificial CCIA Abbreviated Journal  
Volume Issue Pages  
Keywords Image retrieval, textual descriptors, colour naming, colour normalization, graph matching.  
Abstract (up) This paper presents a first approach to build colour and structural descriptors for information retrieval on a people database. Queries are formulated in terms of their appearance that allows to seek people wearing specific clothes of a given colour name or texture. Descriptors are automatically computed by following three essential steps. A colour naming labelling from pixel properties. A region seg- mentation step based on colour properties of pixels combined with edge information. And a high level step that models the region arrangements in order to build clothes structure. Results are tested on large set of images from real scenes taken at the entrance desk of a building.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes DAG;CIC Approved no  
Call Number CAT @ cat @ TBB2002a Serial 287  
Permanent link to this record
 

 
Author Francesc Tous; Agnes Borras; Robert Benavente; Ramon Baldrich; Maria Vanrell; Josep Llados edit  openurl
Title Textual Descriptions for Browsing People by Visual Apperance. Type Book Chapter
Year 2002 Publication Lecture Notes in Artificial Intelligence Abbreviated Journal  
Volume 2504 Issue Pages 419-429  
Keywords  
Abstract (up) This paper presents a first approach to build colour and structural descriptors for information retrieval on a people database. Queries are formulated in terms of their appearance that allows to seek people wearing specific clothes of a given colour name or texture. Descriptors are automatically computed by following three essential steps. A colour naming labelling from pixel properties. A region seg- mentation step based on colour properties of pixels combined with edge information. And a high level step that models the region arrangements in order to build clothes structure. Results are tested on large set of images from real scenes taken at the entrance desk of a building  
Address  
Corporate Author Thesis  
Publisher Springer Verlag Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes DAG;CIC Approved no  
Call Number CAT @ cat @ TBB2002b Serial 319  
Permanent link to this record
 

 
Author David Geronimo; Joan Serrat; Antonio Lopez; Ramon Baldrich edit   pdf
doi  openurl
Title Traffic sign recognition for computer vision project-based learning Type Journal Article
Year 2013 Publication IEEE Transactions on Education Abbreviated Journal T-EDUC  
Volume 56 Issue 3 Pages 364-371  
Keywords traffic signs  
Abstract (up) This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0018-9359 ISBN Medium  
Area Expedition Conference  
Notes ADAS; CIC Approved no  
Call Number Admin @ si @ GSL2013; ADAS @ adas @ Serial 2160  
Permanent link to this record