toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Josep M. Gonfaus; Marco Pedersoli; Jordi Gonzalez; Andrea Vedaldi; Xavier Roca edit   pdf
doi  openurl
  Title Factorized appearances for object detection Type Journal Article
  Year 2015 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 138 Issue Pages 92–101  
  Keywords Object recognition; Deformable part models; Learning and sharing parts; Discovering discriminative parts  
  Abstract (up) Deformable object models capture variations in an object’s appearance that can be represented as image deformations. Other effects such as out-of-plane rotations, three-dimensional articulations, and self-occlusions are often captured by considering mixture of deformable models, one per object aspect. A more scalable approach is representing instead the variations at the level of the object parts, applying the concept of a mixture locally. Combining a few part variations can in fact cheaply generate a large number of global appearances.

A limited version of this idea was proposed by Yang and Ramanan [1], for human pose dectection. In this paper we apply it to the task of generic object category detection and extend it in several ways. First, we propose a model for the relationship between part appearances more general than the tree of Yang and Ramanan [1], which is more suitable for generic categories. Second, we treat part locations as well as their appearance as latent variables so that training does not need part annotations but only the object bounding boxes. Third, we modify the weakly-supervised learning of Felzenszwalb et al. and Girshick et al. [2], [3] to handle a significantly more complex latent structure.
Our model is evaluated on standard object detection benchmarks and is found to improve over existing approaches, yielding state-of-the-art results for several object categories.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ GPG2015 Serial 2705  
Permanent link to this record
 

 
Author Antoni Gurgui; Debora Gil; Enric Marti edit  url
doi  isbn
openurl 
  Title Laplacian Unitary Domain for Texture Morphing Type Conference Article
  Year 2015 Publication Proceedings of the 10th International Conference on Computer Vision Theory and Applications VISIGRAPP2015 Abbreviated Journal  
  Volume 1 Issue Pages 693-699  
  Keywords Facial; metamorphosis;LaplacianMorphing  
  Abstract (up) Deformation of expressive textures is the gateway to realistic computer synthesis of expressions. By their good mathematical properties and flexible formulation on irregular meshes, most texture mappings rely on solutions to the Laplacian in the cartesian space. In the context of facial expression morphing, this approximation can be seen from the opposite point of view by neglecting the metric. In this paper, we use the properties of the Laplacian in manifolds to present a novel approach to warping expressive facial images in order to generate a morphing between them.  
  Address Munich; Germany; February 2015  
  Corporate Author Thesis  
  Publisher SciTePress Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-758-089-5 Medium  
  Area Expedition Conference VISAPP  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ GGM2015 Serial 2614  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Felipe Lumbreras; Antonio Lopez; Theo Gevers edit  openurl
  Title Understanding Road Scenes using Visual Cues Type Miscellaneous
  Year 2012 Publication European Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) DEMO  
  Address Florence; Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ ALL2012 Serial 2795  
Permanent link to this record
 

 
Author Daniel Hernandez; Alejandro Chacon; Antonio Espinosa; David Vazquez; Juan Carlos Moure; Antonio Lopez edit   pdf
url  openurl
  Title Embedded real-time stereo estimation via Semi-Global Matching on the GPU Type Conference Article
  Year 2016 Publication 16th International Conference on Computational Science Abbreviated Journal  
  Volume 80 Issue Pages 143-153  
  Keywords Autonomous Driving; Stereo; CUDA; 3d reconstruction  
  Abstract (up) Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy-efficient GPU devices. Our design runs on a Tegra X1 at 41 frames per second for an image size of 640x480, 128 disparity levels, and using 4 path directions for the SGM method.  
  Address San Diego; CA; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCS  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number ADAS @ adas @ HCE2016a Serial 2740  
Permanent link to this record
 

 
Author Daniel Hernandez; Alejandro Chacon; Antonio Espinosa; David Vazquez; Juan Carlos Moure; Antonio Lopez edit   pdf
openurl 
  Title Stereo Matching using SGM on the GPU Type Report
  Year 2016 Publication Programming and Tuning Massively Parallel Systems Abbreviated Journal PUMPS  
  Volume Issue Pages  
  Keywords CUDA; Stereo; Autonomous Vehicle  
  Abstract (up) Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy efficient GPU devices. Our design runs on a Tegra X1 at 42 frames per second (fps) for an image size of 640x480, 128 disparity levels, and using 4 path directions for the SGM method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PUMPS  
  Notes ADAS; 600.085; 600.087; 600.076 Approved no  
  Call Number ADAS @ adas @ HCE2016b Serial 2776  
Permanent link to this record
 

 
Author Anders Skaarup Johansen; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund edit  url
doi  openurl
  Title Who Cares about the Weather? Inferring Weather Conditions for Weather-Aware Object Detection in Thermal Images Type Journal Article
  Year 2023 Publication Applied Sciences Abbreviated Journal AS  
  Volume 13 Issue 18 Pages  
  Keywords thermal; object detection; concept drift; conditioning; weather recognition  
  Abstract (up) Deployments of real-world object detection systems often experience a degradation in performance over time due to concept drift. Systems that leverage thermal cameras are especially susceptible because the respective thermal signatures of objects and their surroundings are highly sensitive to environmental changes. In this study, two types of weather-aware latent conditioning methods are investigated. The proposed method aims to guide two object detectors, (YOLOv5 and Deformable DETR) to become weather-aware. This is achieved by leveraging an auxiliary branch that predicts weather-related information while conditioning intermediate layers of the object detector. While the conditioning methods proposed do not directly improve the accuracy of baseline detectors, it can be observed that conditioned networks manage to extract a weather-related signal from the thermal images, thus resulting in a decreased miss rate at the cost of increased false positives. The extracted signal appears noisy and is thus challenging to regress accurately. This is most likely a result of the qualitative nature of the thermal sensor; thus, further work is needed to identify an ideal method for optimizing the conditioning branch, as well as to further improve the accuracy of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ SNE2023 Serial 3983  
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz edit   pdf
doi  openurl
  Title Combining Models from Multiple Sources for RGB-D Scene Recognition Type Conference Article
  Year 2017 Publication 26th International Joint Conference on Artificial Intelligence Abbreviated Journal  
  Volume Issue Pages 4523-4529  
  Keywords Robotics and Vision; Vision and Perception  
  Abstract (up) Depth can complement RGB with useful cues about object volumes and scene layout. However, RGB-D image datasets are still too small for directly training deep convolutional neural networks (CNNs), in contrast to the massive monomodal RGB datasets. Previous works in RGB-D recognition typically combine two separate networks for RGB and depth data, pretrained with a large RGB dataset and then fine tuned to the respective target RGB and depth datasets. These approaches have several limitations: 1) only use low-level filters learned from RGB data, thus not being able to exploit properly depth-specific patterns, and 2) RGB and depth features are only combined at high-levels but rarely at lower-levels. In this paper, we propose a framework that leverages both knowledge acquired from large RGB datasets together with depth-specific cues learned from the limited depth data, obtaining more effective multi-source and multi-modal representations. We propose a multi-modal combination method that selects discriminative combinations of layers from the different source models and target modalities, capturing both high-level properties of the task and intrinsic low-level properties of both modalities.  
  Address Melbourne; Australia; August 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IJCAI  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ SJH2017b Serial 2966  
Permanent link to this record
 

 
Author Akhil Gurram; Onay Urfalioglu; Ibrahim Halfaoui; Fahd Bouzaraa; Antonio Lopez edit  url
doi  openurl
  Title Semantic Monocular Depth Estimation Based on Artificial Intelligence Type Journal Article
  Year 2020 Publication IEEE Intelligent Transportation Systems Magazine Abbreviated Journal ITSM  
  Volume 13 Issue 4 Pages 99-103  
  Keywords  
  Abstract (up) Depth estimation provides essential information to perform autonomous driving and driver assistance. A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation. In practice, this means that the depth data used for CNN training is complemented with images having pixel-wise semantic labels where the same raw training data is associated with both types of ground truth, i.e., depth and semantic labels. The main contribution of this paper is to show that this hard constraint can be circumvented, i.e., that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets. In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming state-of-the-art results on monocular depth estimation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ GUH2019 Serial 3306  
Permanent link to this record
 

 
Author Akhil Gurram; Onay Urfalioglu; Ibrahim Halfaoui; Fahd Bouzaraa; Antonio Lopez edit   pdf
doi  openurl
  Title Monocular Depth Estimation by Learning from Heterogeneous Datasets Type Conference Article
  Year 2018 Publication IEEE Intelligent Vehicles Symposium Abbreviated Journal  
  Volume Issue Pages 2176 - 2181  
  Keywords  
  Abstract (up) Depth estimation provides essential information to perform autonomous driving and driver assistance. Especially, Monocular Depth Estimation is interesting from a practical point of view, since using a single camera is cheaper than many other options and avoids the need for continuous calibration strategies as required by stereo-vision approaches. State-of-the-art methods for Monocular Depth Estimation are based on Convolutional Neural Networks (CNNs). A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation. In practice, this means that the depth data used for CNN training is complemented with images having pixel-wise semantic labels, which usually are difficult to annotate (eg crowded urban images). Moreover, so far it is common practice to assume that the same raw training data is associated with both types of ground truth, ie, depth and semantic labels. The main contribution of this paper is to show that this hard constraint can be circumvented, ie, that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets. In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming state-of-the-art results on Monocular Depth Estimation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IV  
  Notes ADAS; 600.124; 600.116; 600.118 Approved no  
  Call Number Admin @ si @ GUH2018 Serial 3183  
Permanent link to this record
 

 
Author Akhil Gurram; Ahmet Faruk Tuna; Fengyi Shen; Onay Urfalioglu; Antonio Lopez edit   pdf
doi  openurl
  Title Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision Type Journal Article
  Year 2021 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 23 Issue 8 Pages 12738-12751  
  Keywords  
  Abstract (up) Depth information is essential for on-board perception in autonomous driving and driver assistance. Monocular depth estimation (MDE) is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Usually, this GT is acquired at training time through a calibrated multi-modal suite of sensors. However, also using only a monocular system at training time is cheaper and more scalable. This is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. In this paper, we perform monocular depth estimation by virtual-world supervision (MonoDEVS) and real-world SfM self-supervision. We compensate the SfM self-supervision limitations by leveraging virtual-world images with accurate semantic and depth supervision and addressing the virtual-to-real domain gap. Our MonoDEVSNet outperforms previous MDE CNNs trained on monocular and even stereo sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ GTS2021 Serial 3598  
Permanent link to this record
 

 
Author Diego Alejandro Cheda edit  openurl
  Title Monocular Depth Cues in Computer Vision Applications Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Depth perception is a key aspect of human vision. It is a routine and essential visual task that the human do effortlessly in many daily activities. This has often been associated with stereo vision, but humans have an amazing ability to perceive depth relations even from a single image by using several monocular cues.

In the computer vision field, if image depth information were available, many tasks could be posed from a different perspective for the sake of higher performance and robustness. Nevertheless, given a single image, this possibility is usually discarded, since obtaining depth information has frequently been performed by three-dimensional reconstruction techniques, requiring two or more images of the same scene taken from different viewpoints. Recently, some proposals have shown the feasibility of computing depth information from single images. In essence, the idea is to take advantage of a priori knowledge of the acquisition conditions and the observed scene to estimate depth from monocular pictorial cues. These approaches try to precisely estimate the scene depth maps by employing computationally demanding techniques. However, to assist many computer vision algorithms, it is not really necessary computing a costly and detailed depth map of the image. Indeed, just a rough depth description can be very valuable in many problems.

In this thesis, we have demonstrated how coarse depth information can be integrated in different tasks following alternative strategies to obtain more precise and robust results. In that sense, we have proposed a simple, but reliable enough technique, whereby image scene regions are categorized into discrete depth ranges to build a coarse depth map. Based on this representation, we have explored the potential usefulness of our method in three application domains from novel viewpoints: camera rotation parameters estimation, background estimation and pedestrian candidate generation. In the first case, we have computed camera rotation mounted in a moving vehicle applying two novels methods based on distant elements in the image, where the translation component of the image flow vectors is negligible. In background estimation, we have proposed a novel method to reconstruct the background by penalizing close regions in a cost function, which integrates color, motion, and depth terms. Finally, we have benefited of geometric and depth information available on single images for pedestrian candidate generation to significantly reduce the number of generated windows to be further processed by a pedestrian classifier. In all cases, results have shown that our approaches contribute to better performances.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Daniel Ponsa;Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Che2012 Serial 2210  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen edit  url
doi  isbn
openurl 
  Title Deep semantic pyramids for human attributes and action recognition Type Conference Article
  Year 2015 Publication Image Analysis, Proceedings of 19th Scandinavian Conference , SCIA 2015 Abbreviated Journal  
  Volume 9127 Issue Pages 341-353  
  Keywords Action recognition; Human attributes; Semantic pyramids  
  Abstract (up) Describing persons and their actions is a challenging problem due to variations in pose, scale and viewpoint in real-world images. Recently, semantic pyramids approach [1] for pose normalization has shown to provide excellent results for gender and action recognition. The performance of semantic pyramids approach relies on robust image description and is therefore limited due to the use of shallow local features. In the context of object recognition [2] and object detection [3], convolutional neural networks (CNNs) or deep features have shown to improve the performance over the conventional shallow features.
We propose deep semantic pyramids for human attributes and action recognition. The method works by constructing spatial pyramids based on CNNs of different part locations. These pyramids are then combined to obtain a single semantic representation. We validate our approach on the Berkeley and 27 Human Attributes datasets for attributes classification. For action recognition, we perform experiments on two challenging datasets: Willow and PASCAL VOC 2010. The proposed deep semantic pyramids provide a significant gain of 17.2%, 13.9%, 24.3% and 22.6% compared to the standard shallow semantic pyramids on Berkeley, 27 Human Attributes, Willow and PASCAL VOC 2010 datasets respectively. Our results also show that deep semantic pyramids outperform conventional CNNs based on the full bounding box of the person. Finally, we compare our approach with state-of-the-art methods and show a gain in performance compared to best methods in literature.
 
  Address Denmark; Copenhagen; June 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-19664-0 Medium  
  Area Expedition Conference SCIA  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ KRW2015b Serial 2672  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen edit  doi
openurl 
  Title Compact color texture description for texture classification Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 51 Issue Pages 16-22  
  Keywords  
  Abstract (up) Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ KRW2015a Serial 2587  
Permanent link to this record
 

 
Author Maria Salamo; Inmaculada Rodriguez; Maite Lopez; Anna Puig; Simone Balocco; Mariona Taule edit  openurl
  Title Recurso docente para la atención de la diversidad en el aula mediante la predicción de notas Type Journal
  Year 2016 Publication ReVision Abbreviated Journal  
  Volume 9 Issue 1 Pages  
  Keywords Aprendizaje automatico; Sistema de prediccion de notas; Herramienta docente  
  Abstract (up) Desde la implantación del Espacio Europeo de Educación Superior (EEES) en los diferentes grados, se ha puesto de manifiesto la necesidad de utilizar diversos mecanismos que permitan tratar la diversidad en el aula, evaluando automáticamente y proporcionando una retroalimentación rápida tanto al alumnado como al profesorado sobre la evolución de los alumnos en una asignatura. En este artículo se presenta la evaluación de la exactitud en las predicciones de GRADEFORESEER, un recurso docente para la predicción de notas basado en técnicas de aprendizaje automático que permite evaluar la evolución del alumnado y estimar su nota final al terminar el curso. Este recurso se ha complementado con una interfaz de usuario para el profesorado que puede ser usada en diferentes plataformas software (sistemas operativos) y en cualquier asignatura de un grado en la que se utilice evaluación continuada. Además de la descripción del recurso, este artículo presenta los resultados obtenidos al aplicar el sistema de predicción en cuatro asignaturas de disciplinas distintas: Programación I (PI), Diseño de Software (DSW) del grado de Ingeniería Informática, Tecnologías de la Información y la Comunicación (TIC) del grado de Lingüística y la asignatura Fundamentos de Tecnología (FDT) del grado de Información y Documentación, todas ellas impartidas en la Universidad de Barcelona.

La capacidad predictiva se ha evaluado de forma binaria (aprueba o no) y según un criterio de rango (suspenso, aprobado, notable o sobresaliente), obteniendo mejores predicciones en los resultados evaluados de forma binaria.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @ SRL2016 Serial 2820  
Permanent link to this record
 

 
Author Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Matthieu Molinier; Jorma Laaksonen edit   pdf
url  openurl
  Title Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification Type Journal Article
  Year 2018 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS J  
  Volume 138 Issue Pages 74-85  
  Keywords Remote sensing; Deep learning; Scene classification; Local Binary Patterns; Texture analysis  
  Abstract (up) Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.106; 600.120 Approved no  
  Call Number Admin @ si @ RKW2018 Serial 3158  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: