toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dustin Carrion Ojeda; Hong Chen; Adrian El Baz; Sergio Escalera; Chaoyu Guan; Isabelle Guyon; Ihsan Ullah; Xin Wang; Wenwu Zhu edit   pdf
url  openurl
  Title NeurIPS’22 Cross-Domain MetaDL competition: Design and baseline results Type Conference Article
  Year 2022 Publication Understanding Social Behavior in Dyadic and Small Group Interactions Abbreviated Journal  
  Volume 191 Issue Pages 24-37  
  Keywords  
  Abstract (up) We present the design and baseline results for a new challenge in the ChaLearn meta-learning series, accepted at NeurIPS'22, focusing on “cross-domain” meta-learning. Meta-learning aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with better performance, little training data, and/or modest computational resources). While previous challenges in the series focused on within-domain few-shot learning problems, with the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k training examples), this competition challenges the participants to solve “any-way” and “any-shot” problems drawn from various domains (healthcare, ecology, biology, manufacturing, and others), chosen for their humanitarian and societal impact. To that end, we created Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which we carve out tasks with any number of “ways” (within the range 2-20) and any number of “shots” (within the range 1-20). The competition is with code submission, fully blind-tested on the CodaLab challenge platform. The code of the winners will be open-sourced, enabling the deployment of automated machine learning solutions for few-shot image classification across several domains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PMLR  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ CCB2022 Serial 3802  
Permanent link to this record
 

 
Author Marco Cotogni; Fei Yang; Claudio Cusano; Andrew Bagdanov; Joost Van de Weijer edit   pdf
openurl 
  Title Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords Marco Cotogni, Fei Yang, Claudio Cusano, Andrew D. Bagdanov, Joost van de Weijer  
  Abstract (up) We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; no proj Approved no  
  Call Number Admin @ si @ CYC2022 Serial 3827  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Kai Wang; Shangling Jui; Joost Van de Weijer edit  openurl
  Title Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation Type Conference Article
  Year 2022 Publication 36th Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) We propose a simple but effective source-free domain adaptation (SFDA) method.
Treating SFDA as an unsupervised clustering problem and following the intuition
that local neighbors in feature space should have more similar predictions than
other features, we propose to optimize an objective of prediction consistency. This
objective encourages local neighborhood features in feature space to have similar
predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method.
 
  Address Virtual; November 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP; 600.147 Approved no  
  Call Number Admin @ si @ YWW2022a Serial 3792  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Kai Wang; Shangling Jui; Joost Van de Weijer edit   pdf
openurl 
  Title Local Prediction Aggregation: A Frustratingly Easy Source-free Domain Adaptation Method Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) We propose a simple but effective source-free domain adaptation (SFDA) method. Treating SFDA as an unsupervised clustering problem and following the intuition that local neighbors in feature space should have more similar predictions than other features, we propose to optimize an objective of prediction consistency. This objective encourages local neighborhood features in feature space to have similar predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method. Code is available in this https URL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147 Approved no  
  Call Number Admin @ si @ YWW2022b Serial 3815  
Permanent link to this record
 

 
Author Saad Minhas; Zeba Khanam; Shoaib Ehsan; Klaus McDonald Maier; Aura Hernandez-Sabate edit  doi
openurl 
  Title Weather Classification by Utilizing Synthetic Data Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue 9 Pages 3193  
  Keywords Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems  
  Abstract (up) Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.  
  Address 21 April 2022  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.159; 600.166; 600.145; Approved no  
  Call Number Admin @ si @ MKE2022 Serial 3761  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: