toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jaykishan Patel; Alban Flachot; Javier Vazquez; David H. Brainard; Thomas S. A. Wallis; Marcus A. Brubaker; Richard F. Murray edit  url
openurl 
  Title A deep convolutional neural network trained to infer surface reflectance is deceived by mid-level lightness illusions Type Journal Article
  Year 2023 Publication Journal of Vision Abbreviated Journal JV  
  Volume 23 Issue 9 Pages 4817-4817  
  Keywords  
  Abstract (up) A long-standing view is that lightness illusions are by-products of strategies employed by the visual system to stabilize its perceptual representation of surface reflectance against changes in illumination. Computationally, one such strategy is to infer reflectance from the retinal image, and to base the lightness percept on this inference. CNNs trained to infer reflectance from images have proven successful at solving this problem under limited conditions. To evaluate whether these CNNs provide suitable starting points for computational models of human lightness perception, we tested a state-of-the-art CNN on several lightness illusions, and compared its behaviour to prior measurements of human performance. We trained a CNN (Yu & Smith, 2019) to infer reflectance from luminance images. The network had a 30-layer hourglass architecture with skip connections. We trained the network via supervised learning on 100K images, rendered in Blender, each showing randomly placed geometric objects (surfaces, cubes, tori, etc.), with random Lambertian reflectance patterns (solid, Voronoi, or low-pass noise), under randomized point+ambient lighting. The renderer also provided the ground-truth reflectance images required for training. After training, we applied the network to several visual illusions. These included the argyle, Koffka-Adelson, snake, White’s, checkerboard assimilation, and simultaneous contrast illusions, along with their controls where appropriate. The CNN correctly predicted larger illusions in the argyle, Koffka-Adelson, and snake images than in their controls. It also correctly predicted an assimilation effect in White's illusion. It did not, however, account for the checkerboard assimilation or simultaneous contrast effects. These results are consistent with the view that at least some lightness phenomena are by-products of a rational approach to inferring stable representations of physical properties from intrinsically ambiguous retinal images. Furthermore, they suggest that CNN models may be a promising starting point for new models of human lightness perception.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ PFV2023 Serial 3890  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Dimosthenis Karatzas; Sophie Wuerger edit   pdf
url  doi
openurl 
  Title Limitations of visual gamma corrections in LCD displays Type Journal Article
  Year 2014 Publication Displays Abbreviated Journal Dis  
  Volume 35 Issue 5 Pages 227–239  
  Keywords Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
  Abstract (up) A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC; DAG; 600.052; 600.077; 600.074 Approved no  
  Call Number Admin @ si @ PRK2014 Serial 2511  
Permanent link to this record
 

 
Author Trevor Canham; Javier Vazquez; D Long; Richard F. Murray; Michael S Brown edit   pdf
openurl 
  Title Noise Prism: A Novel Multispectral Visualization Technique Type Journal Article
  Year 2021 Publication 31st Color and Imaging Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) A novel technique for visualizing multispectral images is proposed. Inspired by how prisms work, our method spreads spectral information over a chromatic noise pattern. This is accomplished by populating the pattern with pixels representing each measurement band at a count proportional to its measured intensity. The method is advantageous because it allows for lightweight encoding and visualization of spectral information
while maintaining the color appearance of the stimulus. A four alternative forced choice (4AFC) experiment was conducted to validate the method’s information-carrying capacity in displaying metameric stimuli of varying colors and spectral basis functions. The scores ranged from 100% to 20% (less than chance given the 4AFC task), with many conditions falling somewhere in between at statistically significant intervals. Using this data, color and texture difference metrics can be evaluated and optimized to predict the legibility of the visualization technique.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIC  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ CVL2021 Serial 4000  
Permanent link to this record
 

 
Author Abel Gonzalez-Garcia; Robert Benavente; Olivier Penacchio; Javier Vazquez; Maria Vanrell; C. Alejandro Parraga edit   pdf
doi  isbn
openurl 
  Title Coloresia: An Interactive Colour Perception Device for the Visually Impaired Type Book Chapter
  Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
  Volume 48 Issue Pages 47-66  
  Keywords  
  Abstract (up) A significative percentage of the human population suffer from impairments in their capacity to distinguish or even see colours. For them, everyday tasks like navigating through a train or metro network map becomes demanding. We present a novel technique for extracting colour information from everyday natural stimuli and presenting it to visually impaired users as pleasant, non-invasive sound. This technique was implemented inside a Personal Digital Assistant (PDA) portable device. In this implementation, colour information is extracted from the input image and categorised according to how human observers segment the colour space. This information is subsequently converted into sound and sent to the user via speakers or headphones. In the original implementation, it is possible for the user to send its feedback to reconfigure the system, however several features such as these were not implemented because the current technology is limited.We are confident that the full implementation will be possible in the near future as PDA technology improves.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
  Area Expedition Conference  
  Notes CIC; 600.052; 605.203 Approved no  
  Call Number Admin @ si @ GBP2013 Serial 2266  
Permanent link to this record
 

 
Author O. Fors; J. Nuñez; Xavier Otazu; A. Prades; Robert D. Cardinal edit  doi
openurl 
  Title Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques Type Journal Article
  Year 2010 Publication Sensors Abbreviated Journal SENS  
  Volume 10 Issue 3 Pages 1743–1752  
  Keywords image processing; image deconvolution; faint stars; space debris; wavelet transform  
  Abstract (up) Abstract: In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ FNO2010 Serial 1285  
Permanent link to this record
 

 
Author Danna Xue; Javier Vazquez; Luis Herranz; Yang Zhang; Michael S Brown edit  url
openurl 
  Title Integrating High-Level Features for Consistent Palette-based Multi-image Recoloring Type Journal Article
  Year 2023 Publication Computer Graphics Forum Abbreviated Journal CGF  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Achieving visually consistent colors across multiple images is important when images are used in photo albums, websites, and brochures. Unfortunately, only a handful of methods address multi-image color consistency compared to one-to-one color transfer techniques. Furthermore, existing methods do not incorporate high-level features that can assist graphic designers in their work. To address these limitations, we introduce a framework that builds upon a previous palette-based color consistency method and incorporates three high-level features: white balance, saliency, and color naming. We show how these features overcome the limitations of the prior multi-consistency workflow and showcase the user-friendly nature of our framework.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC; MACO Approved no  
  Call Number Admin @ si @ XVH2023 Serial 3883  
Permanent link to this record
 

 
Author Shida Beigpour; Joost Van de Weijer edit   pdf
openurl 
  Title Photo-Realistic Color Alteration for Architecture and Design Type Conference Article
  Year 2010 Publication Proceedings of The CREATE 2010 Conference Abbreviated Journal  
  Volume Issue Pages 84–88  
  Keywords  
  Abstract (up) As color is a strong stimuli we receive from the exterior world, choosing the right color can prove crucial in creating the desired architecture and desing. We propose a framework to apply a realistic color change on both objects and their illuminant lights for snapshots of architectural designs, in order to visualize and choose the right color before actully applying the change in the real world. The proposed framework is based on the laws of physics in order to accomplish realistic and physically plausible results.  
  Address Gjovik (Norway)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CREATE  
  Notes CIC Approved no  
  Call Number CAT @ cat @ BeW2010 Serial 1330  
Permanent link to this record
 

 
Author Sagnik Das; Hassan Ahmed Sial; Ke Ma; Ramon Baldrich; Maria Vanrell; Dimitris Samaras edit   pdf
openurl 
  Title Intrinsic Decomposition of Document Images In-the-Wild Type Conference Article
  Year 2020 Publication 31st British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Automatic document content processing is affected by artifacts caused by the shape
of the paper, non-uniform and diverse color of lighting conditions. Fully-supervised
methods on real data are impossible due to the large amount of data needed. Hence, the
current state of the art deep learning models are trained on fully or partially synthetic images. However, document shadow or shading removal results still suffer because: (a) prior methods rely on uniformity of local color statistics, which limit their application on real-scenarios with complex document shapes and textures and; (b) synthetic or hybrid datasets with non-realistic, simulated lighting conditions are used to train the models. In this paper we tackle these problems with our two main contributions. First, a physically constrained learning-based method that directly estimates document reflectance based on intrinsic image formation which generalizes to challenging illumination conditions. Second, a new dataset that clearly improves previous synthetic ones, by adding a large range of realistic shading and diverse multi-illuminant conditions, uniquely customized to deal with documents in-the-wild. The proposed architecture works in two steps. First, a white balancing module neutralizes the color of the illumination on the input image. Based on the proposed multi-illuminant dataset we achieve a good white-balancing in really difficult conditions. Second, the shading separation module accurately disentangles the shading and paper material in a self-supervised manner where only the synthetic texture is used as a weak training signal (obviating the need for very costly ground truth with disentangled versions of shading and reflectance). The proposed approach leads to significant generalization of document reflectance estimation in real scenes with challenging illumination. We extensively evaluate on the real benchmark datasets available for intrinsic image decomposition and document shadow removal tasks. Our reflectance estimation scheme, when used as a pre-processing step of an OCR pipeline, shows a 21% improvement of character error rate (CER), thus, proving the practical applicability. The data and code will be available at: https://github.com/cvlab-stonybrook/DocIIW.
 
  Address Virtual; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes CIC; 600.087; 600.140; 600.118 Approved no  
  Call Number Admin @ si @ DSM2020 Serial 3461  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
openurl 
  Title Color spaces emerging from deep convolutional networks Type Conference Article
  Year 2016 Publication 24th Color and Imaging Conference Abbreviated Journal  
  Volume Issue Pages 225-230  
  Keywords  
  Abstract (up) Award for the best interactive session
Defining color spaces that provide a good encoding of spatio-chromatic properties of color surfaces is an open problem in color science [8, 22]. Related to this, in computer vision the fusion of color with local image features has been studied and evaluated [16]. In human vision research, the cells which are selective to specific color hues along the visual pathway are also a focus of attention [7, 14]. In line with these research aims, in this paper we study how color is encoded in a deep Convolutional Neural Network (CNN) that has been trained on more than one million natural images for object recognition. These convolutional nets achieve impressive performance in computer vision, and rival the representations in human brain. In this paper we explore how color is represented in a CNN architecture that can give some intuition about efficient spatio-chromatic representations. In convolutional layers the activation of a neuron is related to a spatial filter, that combines spatio-chromatic representations. We use an inverted version of it to explore the properties. Using a series of unsupervised methods we classify different type of neurons depending on the color axes they define and we propose an index of color-selectivity of a neuron. We estimate the main color axes that emerge from this trained net and we prove that colorselectivity of neurons decreases from early to deeper layers.
 
  Address San Diego; USA; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIC  
  Notes CIC Approved no  
  Call Number Admin @ si @ RaV2016a Serial 2894  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Maria Vanrell edit   pdf
url  doi
openurl 
  Title Modulating Shape Features by Color Attention for Object Recognition Type Journal Article
  Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 98 Issue 1 Pages 49-64  
  Keywords  
  Abstract (up) Bag-of-words based image representation is a successful approach for object recognition. Generally, the subsequent stages of the process: feature detection,feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, it was found that the combination of different image cues, such as shape and color, often obtains below expected results. This paper presents a novel method for recognizing object categories when using ultiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom up and top-down attention maps. Subsequently, these color attention maps are used to modulate the weights of the shape features. In regions with higher attention shape features are given more weight than in regions with low attention. We compare our approach with existing methods that combine color and shape cues on five data sets containing varied importance of both cues, namely, Soccer (color predominance), Flower (color and hape parity), PASCAL VOC 2007 and 2009 (shape predominance) and Caltech-101 (color co-interference). The experiments clearly demonstrate that in all five data sets our proposed framework significantly outperforms existing methods for combining color and shape information.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ KWV2012 Serial 1864  
Permanent link to this record
 

 
Author Olivier Penacchio; Laura Dempere-Marco; Xavier Otazu edit   pdf
openurl 
  Title Switching off brightness induction through induction-reversed images Type Abstract
  Year 2012 Publication Perception Abbreviated Journal PER  
  Volume 41 Issue Pages 208  
  Keywords  
  Abstract (up) Brightness induction is the modulation of the perceived intensity of an
area by the luminance of surrounding areas. Although V1 is traditionally regarded as
an area mostly responsive to retinal information, neurophysiological evidence
suggests that it may explicitly represent brightness information. In this work, we
investigate possible neural mechanisms underlying brightness induction. To this end,
we consider the model by Z Li (1999 Computation and Neural Systems10187-212)
which is constrained by neurophysiological data and focuses on the part of V1
responsible for contextual influences. This model, which has proven to account for
phenomena such as contour detection and preattentive segmentation, shares with
brightness induction the relevant effect of contextual influences. Importantly, the
input to our network model derives from a complete multiscale and multiorientation
wavelet decomposition, which makes it possible to recover an image reflecting the
perceived luminance and successfully accounts for well known psychophysical
effects for both static and dynamic contexts. By further considering inverse problem
techniques we define induction-reversed images: given a target image, we build an
image whose perceived luminance matches the actual luminance of the original
stimulus, thus effectively canceling out brightness induction effects. We suggest that
induction-reversed images may help remove undesired perceptual effects and can
find potential applications in fields such as radiological image interpretation
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ PDO2012a Serial 2180  
Permanent link to this record
 

 
Author Xavier Otazu; Olivier Penacchio; Laura Dempere-Marco edit   pdf
doi  openurl
  Title Brightness induction by contextual influences in V1: a neurodynamical account Type Abstract
  Year 2012 Publication Journal of Vision Abbreviated Journal VSS  
  Volume 12 Issue 9 Pages  
  Keywords  
  Abstract (up) Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas and reveals fundamental properties of neural organization in the visual system. Several phenomenological models have been proposed that successfully account for psychophysical data (Pessoa et al. 1995, Blakeslee and McCourt 2004, Barkan et al. 2008, Otazu et al. 2008).
Neurophysiological evidence suggests that brightness information is explicitly represented in V1 and neuronal response modulations have been observed followingluminance changes outside their receptive fields (Rossi and Paradiso, 1999).
In this work we investigate possible neural mechanisms that offer a plausible explanation for such effects. To this end, we consider the model by Z.Li (1999) which is based on biological data and focuses on the part of V1 responsible for contextual influences, namely, layer 2–3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has proven to account for phenomena such as contour detection and preattentive segmentation, which share with brightness induction the relevant effect of contextual influences. In our model, the input to the network is derived from a complete multiscale and multiorientation wavelet decomposition which makes it possible to recover an image reflecting the perceived intensity. The proposed model successfully accounts for well known pyschophysical effects (among them: the White's and modified White's effects, the Todorović, Chevreul, achromatic ring patterns, and grating induction effects). Our work suggests that intra-cortical interactions in the primary visual cortex could partially explain perceptual brightness induction effects and reveals how a common general architecture may account for several different fundamental processes emerging early in the visual pathway.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ OPD2012b Serial 2178  
Permanent link to this record
 

 
Author Olivier Penacchio; Laura Dempere-Marco; Xavier Otazu edit   pdf
openurl 
  Title A Neurodynamical Model Of Brightness Induction In V1 Following Static And Dynamic Contextual Influences Type Abstract
  Year 2012 Publication 8th Federation of European Neurosciences Abbreviated Journal  
  Volume 6 Issue Pages 63-64  
  Keywords  
  Abstract (up) Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Although striate cortex is traditionally regarded as an area mostly responsive to ensory (i.e. retinal) information,
neurophysiological evidence suggests that perceived brightness information mightbe explicitly represented in V1.
Such evidence has been observed both in anesthetised cats where neuronal response modulations have been found to follow luminance changes outside the receptive felds and in human fMRI measurements. In this work, possible neural mechanisms that ofer a plausible explanation for such phenomenon are investigated. To this end, we consider the model proposed by Z.Li (Li, Network:Comput. Neural Syst., 10 (1999)) which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual infuences, i.e. layer 2-3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has reproduced other phenomena such as contour detection and preattentive segmentation, which share with brightness induction the relevant efect of contextual infuences. We have extended the original model such that the input to the network is obtained from a complete multiscale and multiorientation wavelet decomposition, thereby allowing the recovery of an image refecting the perceived intensity. The proposed model successfully accounts for well known psychophysical efects for static contexts (among them: the White's and modifed White's efects, the Todorovic, Chevreul, achromatic ring patterns, and grating induction efects) and also for brigthness induction in dynamic contexts defned by modulating the luminance of surrounding areas (e.g. the brightness of a static central area is perceived to vary in antiphase to the sinusoidal luminance changes of its surroundings). This work thus suggests that intra-cortical interactions in V1 could partially explain perceptual brightness induction efects and reveals how a common general architecture may account for several different fundamental processes emerging early in the visual processing pathway.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FENS  
  Notes CIC Approved no  
  Call Number Admin @ si @ PDO2012b Serial 2181  
Permanent link to this record
 

 
Author Xavier Otazu; Olivier Penacchio; Laura Dempere-Marco edit   pdf
url  openurl
  Title An investigation into plausible neural mechanisms related to the the CIWaM computational model for brightness induction Type Conference Article
  Year 2012 Publication 2nd Joint AVA / BMVA Meeting on Biological and Machine Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. From a purely computational perspective, we built a low-level computational model (CIWaM) of early sensory processing based on multi-resolution wavelets with the aim of replicating brightness and colour (Otazu et al., 2010, Journal of Vision, 10(12):5) induction effects. Furthermore, we successfully used the CIWaM architecture to define a computational saliency model (Murray et al, 2011, CVPR, 433-440; Vanrell et al, submitted to AVA/BMVA'12). From a biological perspective, neurophysiological evidence suggests that perceived brightness information may be explicitly represented in V1. In this work we investigate possible neural mechanisms that offer a plausible explanation for such effects. To this end, we consider the model by Z.Li (Li, 1999, Network:Comput. Neural Syst., 10, 187-212) which is based on biological data and focuses on the part of V1 responsible for contextual influences, namely, layer 2-3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has proven to account for phenomena such as visual saliency, which share with brightness induction the relevant effect of contextual influences (the ones modelled by CIWaM). In the proposed model, the input to the network is derived from a complete multiscale and multiorientation wavelet decomposition taken from the computational model (CIWaM).
This model successfully accounts for well known pyschophysical effects (among them: the White's and modied White's effects, the Todorovic, Chevreul, achromatic ring patterns, and grating induction effects) for static contexts and also for brigthness induction in dynamic contexts defined by modulating the luminance of surrounding areas. From a methodological point of view, we conclude that the results obtained by the computational model (CIWaM) are compatible with the ones obtained by the neurodynamical model proposed here.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AV A  
  Notes CIC Approved no  
  Call Number Admin @ si @ OPD2012a Serial 2132  
Permanent link to this record
 

 
Author Olivier Penacchio; Xavier Otazu; Laura Dempere-Marco edit   pdf
doi  openurl
  Title A Neurodynamical Model of Brightness Induction in V1 Type Journal Article
  Year 2013 Publication PloS ONE Abbreviated Journal Plos  
  Volume 8 Issue 5 Pages e64086  
  Keywords  
  Abstract (up) Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ POD2013 Serial 2242  
Permanent link to this record
 

 
Author Danna Xue; Luis Herranz; Javier Vazquez; Yanning Zhang edit  url
doi  openurl
  Title Burst Perception-Distortion Tradeoff: Analysis and Evaluation Type Conference Article
  Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Burst image restoration attempts to effectively utilize the complementary cues appearing in sequential images to produce a high-quality image. Most current methods use all the available images to obtain the reconstructed image. However, using more images for burst restoration is not always the best option regarding reconstruction quality and efficiency, as the images acquired by handheld imaging devices suffer from degradation and misalignment caused by the camera noise and shake. In this paper, we extend the perception-distortion tradeoff theory by introducing multiple-frame information. We propose the area of the unattainable region as a new metric for perception-distortion tradeoff evaluation and comparison. Based on this metric, we analyse the performance of burst restoration from the perspective of the perception-distortion tradeoff under both aligned bursts and misaligned bursts situations. Our analysis reveals the importance of inter-frame alignment for burst restoration and shows that the optimal burst length for the restoration model depends both on the degree of degradation and misalignment.  
  Address Rodhes Islands; Greece; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes CIC; MACO Approved no  
  Call Number Admin @ si @ XHV2023 Serial 3909  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit  doi
isbn  openurl
  Title Perceptual color texture codebooks for retrieving in highly diverse texture datasets Type Conference Article
  Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 866–869  
  Keywords  
  Abstract (up) Color and texture are visual cues of different nature, their integration in a useful visual descriptor is not an obvious step. One way to combine both features is to compute texture descriptors independently on each color channel. A second way is integrate the features at a descriptor level, in this case arises the problem of normalizing both cues. A significant progress in the last years in object recognition has provided the bag-of-words framework that again deals with the problem of feature combination through the definition of vocabularies of visual words. Inspired in this framework, here we present perceptual textons that will allow to fuse color and texture at the level of p-blobs, which is our feature detection step. Feature representation is based on two uniform spaces representing the attributes of the p-blobs. The low-dimensionality of these text on spaces will allow to bypass the usual problems of previous approaches. Firstly, no need for normalization between cues; and secondly, vocabularies are directly obtained from the perceptual properties of text on spaces without any learning step. Our proposal improve current state-of-art of color-texture descriptors in an image retrieval experiment over a highly diverse texture dataset from Corel.  
  Address Istanbul (Turkey)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium  
  Area Expedition Conference ICPR  
  Notes CIC Approved no  
  Call Number CAT @ cat @ ASV2010b Serial 1426  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit  doi
isbn  openurl
  Title 3D Texton Spaces for color-texture retrieval Type Conference Article
  Year 2010 Publication 7th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 6111 Issue Pages 354–363  
  Keywords  
  Abstract (up) Color and texture are visual cues of different nature, their integration in an useful visual descriptor is not an easy problem. One way to combine both features is to compute spatial texture descriptors independently on each color channel. Another way is to do the integration at the descriptor level. In this case the problem of normalizing both cues arises. In this paper we solve the latest problem by fusing color and texture through distances in texton spaces. Textons are the attributes of image blobs and they are responsible for texture discrimination as defined in Julesz’s Texton theory. We describe them in two low-dimensional and uniform spaces, namely, shape and color. The dissimilarity between color texture images is computed by combining the distances in these two spaces. Following this approach, we propose our TCD descriptor which outperforms current state of art methods in the two different approaches mentioned above, early combination with LBP and late combination with MPEG-7. This is done on an image retrieval experiment over a highly diverse texture dataset from Corel.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor A.C. Campilho and M.S. Kamel  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13771-6 Medium  
  Area Expedition Conference ICIAR  
  Notes CIC Approved no  
  Call Number CAT @ cat @ ASV2010a Serial 1325  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: