|   | 
Details
   web
Records
Author Idoia Ruiz
Title Deep Metric Learning for re-identification, tracking and hierarchical novelty detection Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Metric learning refers to the problem in machine learning of learning a distance or similarity measurement to compare data. In particular, deep metric learning involves learning a representation, also referred to as embedding, such that in the embedding space data samples can be compared based on the distance, directly providing a similarity measure. This step is necessary to perform several tasks in computer vision. It allows to perform the classification of images, regions or pixels, re-identification, out-of-distribution detection, object tracking in image sequences and any other task that requires computing a similarity score for their solution. This thesis addresses three specific problems that share this common requirement. The first one is person re-identification. Essentially, it is an image retrieval task that aims at finding instances of the same person according to a similarity measure. We first compare in terms of accuracy and efficiency, classical metric learning to basic deep learning based methods for this problem. In this context, we also study network distillation as a strategy to optimize the trade-off between accuracy and speed at inference time. The second problem we contribute to is novelty detection in image classification. It consists in detecting samples of novel classes, i.e. never seen during training. However, standard novelty detection does not provide any information about the novel samples besides they are unknown. Aiming at more informative outputs, we take advantage from the hierarchical taxonomies that are intrinsic to the classes. We propose a metric learning based approach that leverages the hierarchical relationships among classes during training, being able to predict the parent class for a novel sample in such hierarchical taxonomy. Our third contribution is in multi-object tracking and segmentation. This joint task comprises classification, detection, instance segmentation and tracking. Tracking can be formulated as a retrieval problem to be addressed with metric learning approaches. We tackle the existing difficulty in academic research that is the lack of annotated benchmarks for this task. To this matter, we introduce the problem of weakly supervised multi-object tracking and segmentation, facing the challenge of not having available ground truth for instance segmentation. We propose a synergistic training strategy that benefits from the knowledge of the supervised tasks that are being learnt simultaneously.
Address July, 2022
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Joan Serrat
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-4-8 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Rui2022 Serial 3717
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil
Title A Flexible Outlier Detector Based on a Topology Given by Graph Communities Type Journal Article
Year 2022 Publication Big Data Research Abbreviated Journal BDR
Volume 29 Issue Pages 100332
Keywords Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors
Abstract Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings.
Address August 28, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 Approved no
Call Number Admin @ si @ RBG2022a Serial 3718
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; B. Cardenas; G. Fonseka; E. Anton; Alvaro Pascual; Richard Frodsham; Zaida Sarrate
Title Time to match; when do homologous chromosomes become closer? Type Journal Article
Year 2022 Publication Chromosoma Abbreviated Journal CHRO
Volume Issue Pages
Keywords
Abstract In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a threedimensional fuorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.
Address August, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 601.139; 600.145; 600.096 Approved no
Call Number Admin @ si @ SBG2022 Serial 3719
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil
Title Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals Type Journal Article
Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI
Volume 12 Issue 5 Pages 2298
Keywords Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion
Abstract The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.
Address February 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; ADAS; 600.139; 600.145; 600.118 Approved no
Call Number Admin @ si @ HYF2022 Serial 3720
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Julien Enconniere; Saryani Asmayawati; Pau Folch; Juan Borrego-Carazo; Miquel Angel Piera
Title E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal ACCESS
Volume 10 Issue Pages 7489-7503
Keywords
Abstract More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.139; 600.118; 600.145 Approved no
Call Number Admin @ si @ GHE2022 Serial 3721
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez
Title Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem Type Journal
Year 2020 Publication Mathematics Abbreviated Journal MATH
Volume 20 Issue 8(9) Pages 1595
Keywords STEM education; Project-based learning; Coding; software tool
Abstract In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
Address September 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; ISE Approved no
Call Number Admin @ si @ Serial 3722
Permanent link to this record
 

 
Author Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil
Title Mental Workload Detection Based on EEG Analysis Type Conference Article
Year 2021 Publication Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. Abbreviated Journal
Volume 339 Issue Pages 268-277
Keywords Cognitive states; Mental workload; EEG analysis; Neural Networks.
Abstract The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
Address Virtual; October 20-22 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CCIA
Notes IAM; 600.139; 600.118; 600.145 Approved no
Call Number Admin @ si @ Serial 3723
Permanent link to this record
 

 
Author Arnau Baro; Carles Badal; Pau Torras; Alicia Fornes
Title Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism Type Conference Article
Year 2022 Publication 3rd International Workshop on Reading Music Systems (WoRMS2021) Abbreviated Journal
Volume Issue Pages 55-59
Keywords Optical Music Recognition; Digits; Image Classification
Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.
Address July 23, 2021, Alicante (Spain)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WoRMS
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ BBT2022 Serial 3734
Permanent link to this record
 

 
Author Pau Torras; Arnau Baro; Alicia Fornes; Lei Kang
Title Improving Handwritten Music Recognition through Language Model Integration Type Conference Article
Year 2022 Publication 4th International Workshop on Reading Music Systems (WoRMS2022) Abbreviated Journal
Volume Issue Pages 42-46
Keywords optical music recognition; historical sources; diversity; music theory; digital humanities
Abstract Handwritten Music Recognition, especially in the historical domain, is an inherently challenging endeavour; paper degradation artefacts and the ambiguous nature of handwriting make recognising such scores an error-prone process, even for the current state-of-the-art Sequence to Sequence models. In this work we propose a way of reducing the production of statistically implausible output sequences by fusing a Language Model into a recognition Sequence to Sequence model. The idea is leveraging visually-conditioned and context-conditioned output distributions in order to automatically find and correct any mistakes that would otherwise break context significantly. We have found this approach to improve recognition results to 25.15 SER (%) from a previous best of 31.79 SER (%) in the literature.
Address November 18, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WoRMS
Notes DAG; 600.121; 600.162; 602.230 Approved no
Call Number Admin @ si @ TBF2022 Serial 3735
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Alicia Fornes; Yousri Kessentini; Beata Megyesi
Title Few shots are all you need: A progressive learning approach for low resource handwritten text recognition Type Journal Article
Year 2022 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 160 Issue Pages 43-49
Keywords
Abstract Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.162; 602.230 Approved no
Call Number Admin @ si @ SFK2022 Serial 3736
Permanent link to this record
 

 
Author Joana Maria Pujadas-Mora; Alicia Fornes; Oriol Ramos Terrades; Josep Llados; Jialuo Chen; Miquel Valls-Figols; Anna Cabre
Title The Barcelona Historical Marriage Database and the Baix Llobregat Demographic Database. From Algorithms for Handwriting Recognition to Individual-Level Demographic and Socioeconomic Data Type Journal
Year 2022 Publication Historical Life Course Studies Abbreviated Journal HLCS
Volume 12 Issue Pages 99-132
Keywords Individual demographic databases; Computer vision, Record linkage; Social mobility; Inequality; Migration; Word spotting; Handwriting recognition; Local censuses; Marriage Licences
Abstract The Barcelona Historical Marriage Database (BHMD) gathers records of the more than 600,000 marriages celebrated in the Diocese of Barcelona and their taxation registered in Barcelona Cathedral's so-called Marriage Licenses Books for the long period 1451–1905 and the BALL Demographic Database brings together the individual information recorded in the population registers, censuses and fiscal censuses of the main municipalities of the county of Baix Llobregat (Barcelona). In this ongoing collection 263,786 individual observations have been assembled, dating from the period between 1828 and 1965 by December 2020. The two databases started as part of different interdisciplinary research projects at the crossroads of Historical Demography and Computer Vision. Their construction uses artificial intelligence and computer vision methods as Handwriting Recognition to reduce the time of execution. However, its current state still requires some human intervention which explains the implemented crowdsourcing and game sourcing experiences. Moreover, knowledge graph techniques have allowed the application of advanced record linkage to link the same individuals and families across time and space. Moreover, we will discuss the main research lines using both databases developed so far in historical demography.
Address June 23, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ PFR2022 Serial 3737
Permanent link to this record
 

 
Author Carlos Boned Riera; Oriol Ramos Terrades
Title Discriminative Neural Variational Model for Unbalanced Classification Tasks in Knowledge Graph Type Conference Article
Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2186-2191
Keywords Measurement; Couplings; Semantics; Ear; Benchmark testing; Data models; Pattern recognition
Abstract Nowadays the paradigm of link discovery problems has shown significant improvements on Knowledge Graphs. However, method performances are harmed by the unbalanced nature of this classification problem, since many methods are easily biased to not find proper links. In this paper we present a discriminative neural variational auto-encoder model, called DNVAE from now on, in which we have introduced latent variables to serve as embedding vectors. As a result, the learnt generative model approximate better the underlying distribution and, at the same time, it better differentiate the type of relations in the knowledge graph. We have evaluated this approach on benchmark knowledge graph and Census records. Results in this last data set are quite impressive since we reach the highest possible score in the evaluation metrics. However, further experiments are still needed to deeper evaluate the performance of the method in more challenging tasks.
Address Montreal; Quebec; Canada; August 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.121; 600.162 Approved no
Call Number Admin @ si @ BoR2022 Serial 3741
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa
Title A Generative Model for Guided Thermal Image Super-Resolution Type Conference Article
Year 2024 Publication 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper presents a novel approach for thermal super-resolution based on a fusion prior, low-resolution thermal image and H brightness channel of the corresponding visible spectrum image. The method combines bicubic interpolation of the ×8 scale target image with the brightness component. To enhance the guidance process, the original RGB image is converted to HSV, and the brightness channel is extracted. Bicubic interpolation is then applied to the low-resolution thermal image, resulting in a Bicubic-Brightness channel blend. This luminance-bicubic fusion is used as an input image to help the training process. With this fused image, the cyclic adversarial generative network obtains high-resolution thermal image results. Experimental evaluations show that the proposed approach significantly improves spatial resolution and pixel intensity levels compared to other state-of-the-art techniques, making it a promising method to obtain high-resolution thermal.
Address Roma; Italia; February 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes MSIAU Approved no
Call Number Admin @ si @ SuS2024 Serial 4002
Permanent link to this record
 

 
Author Hector Laria Mantecon; Kai Wang; Joost Van de Weijer; Bogdan Raducanu; Kai Wang
Title NeRF-Diffusion for 3D-Consistent Face Generation and Editing Type Conference Article
Year 2024 Publication 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Generating high-fidelity 3D-aware images without 3D supervision is a valuable capability in various applications. Current methods based on NeRF features, SDF information, or triplane features have limited variation after training. To address this, we propose a novel approach that combines pretrained models for shape and content generation. Our method leverages a pretrained Neural Radiance Field as a shape prior and a diffusion model for content generation. By conditioning the diffusion model with 3D features, we enhance its ability to generate novel views with 3D awareness. We introduce a consistency token shared between the NeRF module and the diffusion model to maintain 3D consistency during sampling. Moreover, our framework allows for text editing of 3D-aware image generation, enabling users to modify the style over 3D views while preserving semantic content. Our contributions include incorporating 3D awareness into a text-to-image model, addressing identity consistency in 3D view synthesis, and enabling text editing of 3D-aware image generation. We provide detailed explanations, including the shape prior based on the NeRF model and the content generation process using the diffusion model. We also discuss challenges such as shape consistency and sampling saturation. Experimental results demonstrate the effectiveness and visual quality of our approach.
Address Roma; Italia; February 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes LAMP Approved no
Call Number Admin @ si @ LWW2024 Serial 4003
Permanent link to this record
 

 
Author Penny Tarling; Mauricio Cantor; Albert Clapes; Sergio Escalera
Title Deep learning with self-supervision and uncertainty regularization to count fish in underwater images Type Journal Article
Year 2022 Publication PloS One Abbreviated Journal Plos
Volume 17 Issue 5 Pages e0267759
Keywords
Abstract Effective conservation actions require effective population monitoring. However, accurately counting animals in the wild to inform conservation decision-making is difficult. Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive but created a need to process and analyse this data efficiently. Counting animals from such data is challenging, particularly when densely packed in noisy images. Attempting this manually is slow and expensive, while traditional computer vision methods are limited in their generalisability. Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals. To this end, we employ deep learning, with a density-based regression approach, to count fish in low-resolution sonar images. We introduce a large dataset of sonar videos, deployed to record wild Lebranche mullet schools (Mugil liza), with a subset of 500 labelled images. We utilise abundant unlabelled data in a self-supervised task to improve the supervised counting task. For the first time in this context, by introducing uncertainty quantification, we improve model training and provide an accompanying measure of prediction uncertainty for more informed biological decision-making. Finally, we demonstrate the generalisability of our proposed counting framework through testing it on a recent benchmark dataset of high-resolution annotated underwater images from varying habitats (DeepFish). From experiments on both contrasting datasets, we demonstrate our network outperforms the few other deep learning models implemented for solving this task. By providing an open-source framework along with training data, our study puts forth an efficient deep learning template for crowd counting aquatic animals thereby contributing effective methods to assess natural populations from the ever-increasing visual data.
Address
Corporate Author Thesis
Publisher Public Library of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA Approved no
Call Number Admin @ si @ TCC2022 Serial 3743
Permanent link to this record