|   | 
Details
   web
Records
Author Pau Riba; Josep Llados; Alicia Fornes
Title Error-tolerant coarse-to-fine matching model for hierarchical graphs Type Conference Article
Year 2017 Publication 11th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition Abbreviated Journal (down)
Volume 10310 Issue Pages 107-117
Keywords Graph matching; Hierarchical graph; Graph-based representation; Coarse-to-fine matching
Abstract Graph-based representations are effective tools to capture structural information from visual elements. However, retrieving a query graph from a large database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose to generate a hierarchy able to deal with different levels of abstraction while keeping information about the topology. For the proposed representations, a coarse-to-fine matching method is defined. These approaches are validated using real scenarios such as classification of colour images and handwritten word spotting.
Address Anacapri; Italy; May 2017
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor Pasquale Foggia; Cheng-Lin Liu; Mario Vento
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GbRPR
Notes DAG; 600.097; 601.302; 600.121 Approved no
Call Number Admin @ si @ RLF2017a Serial 2951
Permanent link to this record
 

 
Author Veronica Romero; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez
Title Information Extraction in Handwritten Marriage Licenses Books Using the MGGI Methodology Type Conference Article
Year 2017 Publication 8th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal (down)
Volume 10255 Issue Pages 287-294
Keywords Handwritten Text Recognition; Information extraction; Language modeling; MGGI; Categories-based language model
Abstract Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demographic and genealogical research. For example, marriage license books have been used for centuries by ecclesiastical and secular institutions to register marriages. These books follow a simple structure of the text in the records with a evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. In previous works we studied the use of category-based language models and how a Grammatical Inference technique known as MGGI could improve the accuracy of these tasks. In this work we analyze the main causes of the semantic errors observed in previous results and apply a better implementation of the MGGI technique to solve these problems. Using the resulting language model, transcription and information extraction experiments have been carried out, and the results support our proposed approach.
Address Faro; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor L.A. Alexandre; J.Salvador Sanchez; Joao M. F. Rodriguez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-58837-7 Medium
Area Expedition Conference IbPRIA
Notes DAG; 602.006; 600.097; 600.121 Approved no
Call Number Admin @ si @ RFV2017 Serial 2952
Permanent link to this record
 

 
Author Antonio Lopez; Jiaolong Xu; Jose Luis Gomez; David Vazquez; German Ros
Title From Virtual to Real World Visual Perception using Domain Adaptation -- The DPM as Example Type Book Chapter
Year 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal (down)
Volume Issue 13 Pages 243-258
Keywords Domain Adaptation
Abstract Supervised learning tends to produce more accurate classifiers than unsupervised learning in general. This implies that training data is preferred with annotations. When addressing visual perception challenges, such as localizing certain object classes within an image, the learning of the involved classifiers turns out to be a practical bottleneck. The reason is that, at least, we have to frame object examples with bounding boxes in thousands of images. A priori, the more complex the model is regarding its number of parameters, the more annotated examples are required. This annotation task is performed by human oracles, which ends up in inaccuracies and errors in the annotations (aka ground truth) since the task is inherently very cumbersome and sometimes ambiguous. As an alternative we have pioneered the use of virtual worlds for collecting such annotations automatically and with high precision. However, since the models learned with virtual data must operate in the real world, we still need to perform domain adaptation (DA). In this chapter we revisit the DA of a deformable part-based model (DPM) as an exemplifying case of virtual- to-real-world DA. As a use case, we address the challenge of vehicle detection for driver assistance, using different publicly available virtual-world data. While doing so, we investigate questions such as: how does the domain gap behave due to virtual-vs-real data with respect to dominant object appearance per domain, as well as the role of photo-realism in the virtual world.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Gabriela Csurka
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 601.223; 600.076; 600.118 Approved no
Call Number ADAS @ adas @ LXG2017 Serial 2872
Permanent link to this record
 

 
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan Carlos Moure
Title Embedded Real-time Stixel Computation Type Conference Article
Year 2017 Publication GPU Technology Conference Abbreviated Journal (down)
Volume Issue Pages
Keywords GPU; CUDA; Stixels; Autonomous Driving
Abstract
Address Silicon Valley; USA; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GTC
Notes ADAS; 600.118 Approved no
Call Number ADAS @ adas @ HEV2017a Serial 2879
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville
Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Conference Article
Year 2017 Publication 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal (down)
Volume Issue Pages
Keywords Deep Learning; Medical Imaging
Abstract Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss-rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. We provide new baselines on this dataset by training standard fully convolutional networks (FCN) for semantic segmentation and significantly outperforming, without any further post-processing, prior results in endoluminal scene segmentation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CARS
Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no
Call Number ADAS @ adas @ VBS2017a Serial 2880
Permanent link to this record
 

 
Author David Geronimo; David Vazquez; Arturo de la Escalera
Title Vision-Based Advanced Driver Assistance Systems Type Book Chapter
Year 2017 Publication Computer Vision in Vehicle Technology: Land, Sea, and Air Abbreviated Journal (down)
Volume Issue Pages
Keywords ADAS; Autonomous Driving
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number ADAS @ adas @ GVE2017 Serial 2881
Permanent link to this record
 

 
Author German Ros; Laura Sellart; Gabriel Villalonga; Elias Maidanik; Francisco Molero; Marc Garcia; Adriana Cedeño; Francisco Perez; Didier Ramirez; Eduardo Escobar; Jose Luis Gomez; David Vazquez; Antonio Lopez
Title Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA Type Book Chapter
Year 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal (down)
Volume 12 Issue Pages 227-241
Keywords SYNTHIA; Virtual worlds; Autonomous Driving
Abstract Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep convolutional neural networks (DCNNs) foreshadow the advent of reliable classifiers to perform such visual tasks. However, DCNNs require learning of many parameters from raw images; thus, having a sufficient amount of diverse images with class annotations is needed. These annotations are obtained via cumbersome, human labour which is particularly challenging for semantic segmentation since pixel-level annotations are required. In this chapter, we propose to use a combination of a virtual world to automatically generate realistic synthetic images with pixel-level annotations, and domain adaptation to transfer the models learnt to correctly operate in real scenarios. We address the question of how useful synthetic data can be for semantic segmentation – in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic collection of diverse urban images, named SYNTHIA, with automatically generated class annotations and object identifiers. We use SYNTHIA in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments with DCNNs that show that combining SYNTHIA with simple domain adaptation techniques in the training stage significantly improves performance on semantic segmentation.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Gabriela Csurka
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.082; 600.076; 600.118 Approved no
Call Number ADAS @ adas @ RSV2017 Serial 2882
Permanent link to this record
 

 
Author Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas
Title Self‐supervised learning of visual features through embedding images into text topic spaces Type Conference Article
Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal (down)
Volume Issue Pages
Keywords
Abstract End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.
Address Honolulu; Hawaii; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes DAG; 600.084; 600.121 Approved no
Call Number Admin @ si @ GPR2017 Serial 2889
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados
Title Flowchart Recognition in Patent Information Retrieval Type Book Chapter
Year 2017 Publication Current Challenges in Patent Information Retrieval Abbreviated Journal (down)
Volume 37 Issue Pages 351-368
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor M. Lupu; K. Mayer; N. Kando; A.J. Trippe
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.097; 600.121 Approved no
Call Number Admin @ si @ RuL2017 Serial 2896
Permanent link to this record
 

 
Author Victor Vaquero; German Ros; Francesc Moreno-Noguer; Antonio Lopez; Alberto Sanfeliu
Title Joint coarse-and-fine reasoning for deep optical flow Type Conference Article
Year 2017 Publication 24th International Conference on Image Processing Abbreviated Journal (down)
Volume Issue Pages 2558-2562
Keywords
Abstract We propose a novel representation for dense pixel-wise estimation tasks using CNNs that boosts accuracy and reduces training time, by explicitly exploiting joint coarse-and-fine reasoning. The coarse reasoning is performed over a discrete classification space to obtain a general rough solution, while the fine details of the solution are obtained over a continuous regression space. In our approach both components are jointly estimated, which proved to be beneficial for improving estimation accuracy. Additionally, we propose a new network architecture, which combines coarse and fine components by treating the fine estimation as a refinement built on top of the coarse solution, and therefore adding details to the general prediction. We apply our approach to the challenging problem of optical flow estimation and empirically validate it against state-of-the-art CNN-based solutions trained from scratch and tested on large optical flow datasets.
Address Beijing; China; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ VRM2017 Serial 2898
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Cross-Spectral Image Patch Similarity using Convolutional Neural Network Type Conference Article
Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal (down)
Volume Issue Pages
Keywords
Abstract The ability to compare image regions (patches) has been the basis of many approaches to core computer vision problems, including object, texture and scene categorization. Hence, developing representations for image patches have been of interest in several works. The current work focuses on learning similarity between cross-spectral image patches with a 2 channel convolutional neural network (CNN) model. The proposed approach is an adaptation of a previous work, trying to obtain similar results than the state of the art but with a lowcost hardware. Hence, obtained results are compared with both
classical approaches, showing improvements, and a state of the art CNN based approach.
Address San Sebastian; Spain; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECMSM
Notes ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ SSV2017a Serial 2916
Permanent link to this record
 

 
Author Angel Valencia; Roger Idrovo; Angel Sappa; Douglas Plaza; Daniel Ochoa
Title A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers Type Conference Article
Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal (down)
Volume Issue Pages
Keywords
Abstract In general, robot grasping approaches are based on the usage of multi-finger grippers. However, when large size objects need to be manipulated vacuum grippers are preferred, instead of finger based grippers. This paper aims to estimate the best picking place for a two suction cups vacuum gripper,
when planar objects with an unknown size and geometry are considered. The approach is based on the estimation of geometric properties of object’s shape from a partial cloud of points (a single 3D view), in such a way that combine with considerations of a theoretical model to generate an optimal contact point
that minimizes the vacuum force needed to guarantee a grasp.
Experimental results in real scenarios are presented to show the validity of the proposed approach.
Address San Sebastian; Spain; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECMSM
Notes ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ VIS2017 Serial 2917
Permanent link to this record
 

 
Author Cristhian Aguilera; Xavier Soria; Angel Sappa; Ricardo Toledo
Title RGBN Multispectral Images: a Novel Color Restoration Approach Type Conference Article
Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal (down)
Volume Issue Pages
Keywords Multispectral Imaging; Free Sensor Model; Neural Network
Abstract This paper describes a color restoration technique used to remove NIR information from single sensor cameras where color and near-infrared images are simultaneously acquired|referred to in the literature as RGBN images. The proposed approach is based on a neural network architecture that learns the NIR information contained in the RGBN images. The proposed approach is evaluated on real images obtained by using a pair of RGBN cameras. Additionally, qualitative comparisons with a nave color correction technique based on mean square
error minimization are provided.
Address Porto; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PAAMS
Notes ADAS; MSIAU; 600.118; 600.122 Approved no
Call Number Admin @ si @ ASS2017 Serial 2918
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Learning to Colorize Infrared Images Type Conference Article
Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal (down)
Volume Issue Pages
Keywords CNN in multispectral imaging; Image colorization
Abstract This paper focuses on near infrared (NIR) image colorization by using a Generative Adversarial Network (GAN) architecture model. The proposed architecture consists of two stages. Firstly, it learns to colorize the given input, resulting in a RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. The proposed model starts the learning process from scratch, because our set of images is very di erent from the dataset used in existing pre-trained models, so transfer learning strategies cannot be used. Infrared image colorization is an important problem when human perception need to be considered, e.g, in remote sensing applications. Experimental results with a large set of real images are provided showing the validity of the proposed approach.
Address Porto; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PAAMS
Notes ADAS; MSIAU; 600.086; 600.122; 600.118 Approved no
Call Number Admin @ si @ Serial 2919
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Infrared Image Colorization based on a Triplet DCGAN Architecture Type Conference Article
Year 2017 Publication IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal (down)
Volume Issue Pages
Keywords
Abstract This paper proposes a novel approach for colorizing near infrared (NIR) images using Deep Convolutional Generative Adversarial Network (GAN) architectures. The proposed approach is based on the usage of a triplet model for learning each color channel independently, in a more homogeneous way. It allows a fast convergence during the training, obtaining a greater similarity between the given NIR image and the corresponding ground truth. The proposed approach has been evaluated with a large data set of NIR images and compared with a recent approach, which is also based on a GAN architecture but in this case all the
color channels are obtained at the same time.
Address Honolulu; Hawaii; USA; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ SSV2017b Serial 2920
Permanent link to this record