|
Marc Masana, Idoia Ruiz, Joan Serrat, Joost Van de Weijer, & Antonio Lopez. (2018). Metric Learning for Novelty and Anomaly Detection. In 29th British Machine Vision Conference.
Abstract: When neural networks process images which do not resemble the distribution seen during training, so called out-of-distribution images, they often make wrong predictions, and do so too confidently. The capability to detect out-of-distribution images is therefore crucial for many real-world applications. We divide out-of-distribution detection between novelty detection ---images of classes which are not in the training set but are related to those---, and anomaly detection ---images with classes which are unrelated to the training set. By related we mean they contain the same type of objects, like digits in MNIST and SVHN. Most existing work has focused on anomaly detection, and has addressed this problem considering networks trained with the cross-entropy loss. Differently from them, we propose to use metric learning which does not have the drawback of the softmax layer (inherent to cross-entropy methods), which forces the network to divide its prediction power over the learned classes. We perform extensive experiments and evaluate both novelty and anomaly detection, even in a relevant application such as traffic sign recognition, obtaining comparable or better results than previous works.
|
|
|
Marco Buzzelli, Joost Van de Weijer, & Raimondo Schettini. (2018). Learning Illuminant Estimation from Object Recognition. In 25th International Conference on Image Processing (pp. 3234–3238).
Abstract: In this paper we present a deep learning method to estimate the illuminant of an image. Our model is not trained with illuminant annotations, but with the objective of improving performance on an auxiliary task such as object recognition. To the best of our knowledge, this is the first example of a deep
learning architecture for illuminant estimation that is trained without ground truth illuminants. We evaluate our solution on standard datasets for color constancy, and compare it with state of the art methods. Our proposal is shown to outperform most deep learning methods in a cross-dataset evaluation
setup, and to present competitive results in a comparison with parametric solutions.
Keywords: Illuminant estimation; computational color constancy; semi-supervised learning; deep learning; convolutional neural networks
|
|
|
Xialei Liu, Joost Van de Weijer, & Andrew Bagdanov. (2018). Leveraging Unlabeled Data for Crowd Counting by Learning to Rank. In 31st IEEE Conference on Computer Vision and Pattern Recognition (pp. 7661–7669).
Abstract: We propose a novel crowd counting approach that leverages abundantly available unlabeled crowd imagery in a learning-to-rank framework. To induce a ranking of
cropped images , we use the observation that any sub-image of a crowded scene image is guaranteed to contain the same number or fewer persons than the super-image. This allows us to address the problem of limited size of existing
datasets for crowd counting. We collect two crowd scene datasets from Google using keyword searches and queryby-example image retrieval, respectively. We demonstrate how to efficiently learn from these unlabeled datasets by incorporating learning-to-rank in a multi-task network which simultaneously ranks images and estimates crowd density maps. Experiments on two of the most challenging crowd counting datasets show that our approach obtains state-ofthe-art results.
Keywords: Task analysis; Training; Computer vision; Visualization; Estimation; Head; Context modeling
|
|
|
Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio Lopez, & Andrew Bagdanov. (2018). Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting. In 24th International Conference on Pattern Recognition (pp. 2262–2268).
Abstract: In this paper we propose an approach to avoiding catastrophic forgetting in sequential task learning scenarios. Our technique is based on a network reparameterization that approximately diagonalizes the Fisher Information Matrix of the network parameters. This reparameterization takes the form of
a factorized rotation of parameter space which, when used in conjunction with Elastic Weight Consolidation (which assumes a diagonal Fisher Information Matrix), leads to significantly better performance on lifelong learning of sequential tasks. Experimental results on the MNIST, CIFAR-100, CUB-200 and
Stanford-40 datasets demonstrate that we significantly improve the results of standard elastic weight consolidation, and that we obtain competitive results when compared to the state-of-the-art in lifelong learning without forgetting.
|
|
|
Vacit Oguz Yazici, Joost Van de Weijer, & Arnau Ramisa. (2018). Color Naming for Multi-Color Fashion Items. In 6th World Conference on Information Systems and Technologies (Vol. 747, pp. 64–73).
Abstract: There exists a significant amount of research on color naming of single colored objects. However in reality many fashion objects consist of multiple colors. Currently, searching in fashion datasets for multi-colored objects can be a laborious task. Therefore, in this paper we focus on color naming for images with multi-color fashion items. We collect a dataset, which consists of images which may have from one up to four colors. We annotate the images with the 11 basic colors of the English language. We experiment with several designs for deep neural networks with different losses. We show that explicitly estimating the number of colors in the fashion item leads to improved results.
Keywords: Deep learning; Color; Multi-label
|
|
|
Ozan Caglayan, Adrien Bardet, Fethi Bougares, Loic Barrault, Kai Wang, Marc Masana, et al. (2018). LIUM-CVC Submissions for WMT18 Multimodal Translation Task. In 3rd Conference on Machine Translation.
Abstract: This paper describes the multimodal Neural Machine Translation systems developed by LIUM and CVC for WMT18 Shared Task on Multimodal Translation. This year we propose several modifications to our previou multimodal attention architecture in order to better integrate convolutional features and refine them using encoder-side information. Our final constrained submissions
ranked first for English→French and second for English→German language pairs among the constrained submissions according to the automatic evaluation metric METEOR.
|
|
|
Lu Yu, Yongmei Cheng, & Joost Van de Weijer. (2018). Weakly Supervised Domain-Specific Color Naming Based on Attention. In 24th International Conference on Pattern Recognition (pp. 3019–3024).
Abstract: The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.
|
|
|
Chenshen Wu, Luis Herranz, Xialei Liu, Joost Van de Weijer, & Bogdan Raducanu. (2018). Memory Replay GANs: Learning to Generate New Categories without Forgetting. In 32nd Annual Conference on Neural Information Processing Systems (pp. 5966–5976).
Abstract: Previous works on sequential learning address the problem of forgetting in discriminative models. In this paper we consider the case of generative models. In particular, we investigate generative adversarial networks (GANs) in the task of learning new categories in a sequential fashion. We first show that sequential fine tuning renders the network unable to properly generate images from previous categories (ie forgetting). Addressing this problem, we propose Memory Replay GANs (MeRGANs), a conditional GAN framework that integrates a memory replay generator. We study two methods to prevent forgetting by leveraging these replays, namely joint training with replay and replay alignment. Qualitative and quantitative experimental results in MNIST, SVHN and LSUN datasets show that our memory replay approach can generate competitive images while significantly mitigating the forgetting of previous categories.
|
|
|
Bojana Gajic, Ariel Amato, Ramon Baldrich, & Carlo Gatta. (2019). Bag of Negatives for Siamese Architectures. In 30th British Machine Vision Conference.
Abstract: Training a Siamese architecture for re-identification with a large number of identities is a challenging task due to the difficulty of finding relevant negative samples efficiently. In this work we present Bag of Negatives (BoN), a method for accelerated and improved training of Siamese networks that scales well on datasets with a very large number of identities. BoN is an efficient and loss-independent method, able to select a bag of high quality negatives, based on a novel online hashing strategy.
|
|
|
Lichao Zhang, Abel Gonzalez-Garcia, Joost Van de Weijer, Martin Danelljan, & Fahad Shahbaz Khan. (2019). Learning the Model Update for Siamese Trackers. In 18th IEEE International Conference on Computer Vision (pp. 4009–4018).
Abstract: Siamese approaches address the visual tracking problem by extracting an appearance template from the current frame, which is used to localize the target in the next frame. In general, this template is linearly combined with the accumulated template from the previous frame, resulting in an exponential decay of information over time. While such an approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update. Therefore, we propose to replace the handcrafted update function with a method which learns to update. We use a convolutional neural network, called UpdateNet, which given the initial template, the accumulated template and the template of the current frame aims to estimate the optimal template for the next frame. The UpdateNet is compact and can easily be integrated into existing Siamese trackers. We demonstrate the generality of the proposed approach by applying it to two Siamese trackers, SiamFC and DaSiamRPN. Extensive experiments on VOT2016, VOT2018, LaSOT, and TrackingNet datasets demonstrate that our UpdateNet effectively predicts the new target template, outperforming the standard linear update. On the large-scale TrackingNet dataset, our UpdateNet improves the results of DaSiamRPN with an absolute gain of 3.9% in terms of success score.
|
|
|
Lichao Zhang, Martin Danelljan, Abel Gonzalez-Garcia, Joost Van de Weijer, & Fahad Shahbaz Khan. (2019). Multi-Modal Fusion for End-to-End RGB-T Tracking. In IEEE International Conference on Computer Vision Workshops (pp. 2252–2261).
Abstract: We propose an end-to-end tracking framework for fusing the RGB and TIR modalities in RGB-T tracking. Our baseline tracker is DiMP (Discriminative Model Prediction), which employs a carefully designed target prediction network trained end-to-end using a discriminative loss. We analyze the effectiveness of modality fusion in each of the main components in DiMP, i.e. feature extractor, target estimation network, and classifier. We consider several fusion mechanisms acting at different levels of the framework, including pixel-level, feature-level and response-level. Our tracker is trained in an end-to-end manner, enabling the components to learn how to fuse the information from both modalities. As data to train our model, we generate a large-scale RGB-T dataset by considering an annotated RGB tracking dataset (GOT-10k) and synthesizing paired TIR images using an image-to-image translation approach. We perform extensive experiments on VOT-RGBT2019 dataset and RGBT210 dataset, evaluating each type of modality fusing on each model component. The results show that the proposed fusion mechanisms improve the performance of the single modality counterparts. We obtain our best results when fusing at the feature-level on both the IoU-Net and the model predictor, obtaining an EAO score of 0.391 on VOT-RGBT2019 dataset. With this fusion mechanism we achieve the state-of-the-art performance on RGBT210 dataset.
|
|
|
Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost Van de Weijer, Yongmei Cheng, & Arnau Ramisa. (2019). Learning Metrics from Teachers: Compact Networks for Image Embedding. In 32nd IEEE Conference on Computer Vision and Pattern Recognition (pp. 2907–2916).
Abstract: Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the
communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be
used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5% to 44.6%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semisupervised learning and cross quality distillation.
|
|
|
Javad Zolfaghari Bengar, Abel Gonzalez-Garcia, Gabriel Villalonga, Bogdan Raducanu, Hamed H. Aghdam, Mikhail Mozerov, et al. (2019). Temporal Coherence for Active Learning in Videos. In IEEE International Conference on Computer Vision Workshops (pp. 914–923).
Abstract: Autonomous driving systems require huge amounts of data to train. Manual annotation of this data is time-consuming and prohibitively expensive since it involves human resources. Therefore, active learning emerged as an alternative to ease this effort and to make data annotation more manageable. In this paper, we introduce a novel active learning approach for object detection in videos by exploiting temporal coherence. Our active learning criterion is based on the estimated number of errors in terms of false positives and false negatives. The detections obtained by the object detector are used to define the nodes of a graph and tracked forward and backward to temporally link the nodes. Minimizing an energy function defined on this graphical model provides estimates of both false positives and false negatives. Additionally, we introduce a synthetic video dataset, called SYNTHIA-AL, specially designed to evaluate active learning for video object detection in road scenes. Finally, we show that our approach outperforms active learning baselines tested on two datasets.
|
|
|
Hamed H. Aghdam, Abel Gonzalez-Garcia, Joost Van de Weijer, & Antonio Lopez. (2019). Active Learning for Deep Detection Neural Networks. In 18th IEEE International Conference on Computer Vision (pp. 3672–3680).
Abstract: The cost of drawing object bounding boxes (ie labeling) for millions of images is prohibitively high. For instance, labeling pedestrians in a regular urban image could take 35 seconds on average. Active learning aims to reduce the cost of labeling by selecting only those images that are informative to improve the detection network accuracy. In this paper, we propose a method to perform active learning of object detectors based on convolutional neural networks. We propose a new image-level scoring process to rank unlabeled images for their automatic selection, which clearly outperforms classical scores. The proposed method can be applied to videos and sets of still images. In the former case, temporal selection rules can complement our scoring process. As a relevant use case, we extensively study the performance of our method on the task of pedestrian detection. Overall, the experiments show that the proposed method performs better than random selection.
|
|
|
Yaxing Wang, Abel Gonzalez-Garcia, Joost Van de Weijer, & Luis Herranz. (2019). SDIT: Scalable and Diverse Cross-domain Image Translation. In 27th ACM International Conference on Multimedia (1267–1276).
Abstract: Recently, image-to-image translation research has witnessed remarkable progress. Although current approaches successfully generate diverse outputs or perform scalable image transfer, these properties have not been combined into a single method. To address this limitation, we propose SDIT: Scalable and Diverse image-to-image translation. These properties are combined into a single generator. The diversity is determined by a latent variable which is randomly sampled from a normal distribution. The scalability is obtained by conditioning the network on the domain attributes. Additionally, we also exploit an attention mechanism that permits the generator to focus on the domain-specific attribute. We empirically demonstrate the performance of the proposed method on face mapping and other datasets beyond faces.
|
|
|
C. Alejandro Parraga, Xavier Otazu, & Arash Akbarinia. (2019). Modelling symmetry perception with banks of quadrature convolutional Gabor kernels. In 42nd edition of the European Conference on Visual Perception (p. 224).
Abstract: Mirror symmetry is a property most likely to be encountered in animals than in medium scale vegetation or inanimate objects in the natural world. This might be the reason why the human visual system has evolved to detect it quickly and robustly. Indeed, the perception of symmetry assists higher-level visual processing that are crucial for survival such as target recognition and identification irrespective of position and location. Although the task of detecting symmetrical objects seems effortless to us, it is very challenging for computers (to the extent that it has been proposed as a robust “captcha” by Funk & Liu in 2016). Indeed, the exact mechanism of symmetry detection in primates is not well understood: fMRI studies have shown that symmetrical shapes activate specific higher-level areas of the visual cortex (Sasaki et al.; 2005) and similarly, a large body of psychophysical experiments suggest that the symmetry perception is critically influenced by low-level mechanisms (Treder; 2010). In this work we attempt to find plausible low-level mechanisms that might form the basis for symmetry perception. Our simple model is made from banks of (i) odd-symmetric Gabors (resembling edge-detecting V1 neurons); and (ii) banks of larger odd- and even-symmetric Gabors (resembling higher visual cortex neurons), that pool signals from the 'edge image'. As reported previously (Akbarinia et al, ECVP2017), the convolution of the symmetrical lines with the two Gabor kernels of alternative phase produces a minimum in one and a maximum in the other (Osorio; 1996), and the rectification and combination of these signals create lines which hint of mirror symmetry in natural images. We improved the algorithm by combining these signals across several spatial scales. Our preliminary results suggest that such multiscale combination of convolutional operations might form the basis for much of the operation of the HVS in terms of symmetry detection and representation.
|
|
|
David Berga, Xose R. Fernandez-Vidal, Xavier Otazu, & Xose M. Pardo. (2019). SID4VAM: A Benchmark Dataset with Synthetic Images for Visual Attention Modeling. In 18th IEEE International Conference on Computer Vision (pp. 8788–8797).
Abstract: A benchmark of saliency models performance with a synthetic image dataset is provided. Model performance is evaluated through saliency metrics as well as the influence of model inspiration and consistency with human psychophysics. SID4VAM is composed of 230 synthetic images, with known salient regions. Images were generated with 15 distinct types of low-level features (e.g. orientation, brightness, color, size...) with a target-distractor popout type of synthetic patterns. We have used Free-Viewing and Visual Search task instructions and 7 feature contrasts for each feature category. Our study reveals that state-ofthe-art Deep Learning saliency models do not perform well with synthetic pattern images, instead, models with Spectral/Fourier inspiration outperform others in saliency metrics and are more consistent with human psychophysical experimentation. This study proposes a new way to evaluate saliency models in the forthcoming literature, accounting for synthetic images with uniquely low-level feature contexts, distinct from previous eye tracking image datasets.
|
|
|
David Berga, & Xavier Otazu. (2019). Computations of inhibition of return mechanisms by modulating V1 dynamics. In 28th Annual Computational Neuroscience Meeting.
Abstract: In this study we present a unifed model of the visual cortex for predicting visual attention using real image scenes. Feedforward mechanisms from RGC and LGN have been functionally modeled using wavelet filters at distinct orientations and scales for each chromatic pathway (Magno-, Parvo-, Konio-cellular) and polarity (ON-/OFF-center), by processing image components in the CIE Lab space. In V1, we process cortical interactions with an excitatory-inhibitory network of fring rate neurons, initially proposed by (Li, 1999), later extended by (Penacchio et al. 2013). Firing rates from model’s output have been used as predictors of neuronal activity to be projected in a map in superior colliculus (with WTA-like computations), determining locations of visual fxations. These locations will be considered as already visited areas for future saccades, therefore we integrated a spatiotemporal function of inhibition of return mechanisms (where LIP/FEF is responsible) to feed to the model with spatial memory for next saccades. Foveation mechanisms have been simulated with a cortical magnifcation function, which distort spatial viewing properties for each fxation. Results show lower prediction errors than with respect no IoR cases (Fig. 1), and it is functionally consistent with human psychophysical measurements. Our model follows a biologically-constrained architecture, previously shown to reproduce visual saliency (Berga & Otazu, 2018), visual discomfort (Penacchio et al. 2016), brightness (Penacchio et al. 2013) and chromatic induction (Cerda & Otazu, 2016).
|
|