toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Frederic Sampedro; Anna Domenech; Sergio Escalera; Ignasi Carrio edit  doi
openurl 
  Title Deriving global quantitative tumor response parameters from 18F-FDG PET-CT scans in patients with non-Hodgkins lymphoma Type Journal Article
  Year 2015 Publication Nuclear Medicine Communications Abbreviated Journal (up) NMC  
  Volume 36 Issue 4 Pages 328-333  
  Keywords  
  Abstract OBJECTIVES:
The aim of the study was to address the need for quantifying the global cancer time evolution magnitude from a pair of time-consecutive positron emission tomography-computed tomography (PET-CT) scans. In particular, we focus on the computation of indicators using image-processing techniques that seek to model non-Hodgkin's lymphoma (NHL) progression or response severity.
MATERIALS AND METHODS:
A total of 89 pairs of time-consecutive PET-CT scans from NHL patients were stored in a nuclear medicine station for subsequent analysis. These were classified by a consensus of nuclear medicine physicians into progressions, partial responses, mixed responses, complete responses, and relapses. The cases of each group were ordered by magnitude following visual analysis. Thereafter, a set of quantitative indicators designed to model the cancer evolution magnitude within each group were computed using semiautomatic and automatic image-processing techniques. Performance evaluation of the proposed indicators was measured by a correlation analysis with the expert-based visual analysis.
RESULTS:
The set of proposed indicators achieved Pearson's correlation results in each group with respect to the expert-based visual analysis: 80.2% in progressions, 77.1% in partial response, 68.3% in mixed response, 88.5% in complete response, and 100% in relapse. In the progression and mixed response groups, the proposed indicators outperformed the common indicators used in clinical practice [changes in metabolic tumor volume, mean, maximum, peak standardized uptake value (SUV mean, SUV max, SUV peak), and total lesion glycolysis] by more than 40%.
CONCLUSION:
Computing global indicators of NHL response using PET-CT imaging techniques offers a strong correlation with the associated expert-based visual analysis, motivating the future incorporation of such quantitative and highly observer-independent indicators in oncological decision making or treatment response evaluation scenarios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SDE2015 Serial 2605  
Permanent link to this record
 

 
Author Eloi Puertas; Sergio Escalera; Oriol Pujol edit   pdf
url  doi
openurl 
  Title Generalized Multi-scale Stacked Sequential Learning for Multi-class Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal (up) PAA  
  Volume 18 Issue 2 Pages 247-261  
  Keywords Stacked sequential learning; Multi-scale; Error-correct output codes (ECOC); Contextual classification  
  Abstract In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ PEP2013 Serial 2251  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  doi
openurl 
  Title Combining Local and Global Learners in the Pairwise Multiclass Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal (up) PAA  
  Volume 18 Issue 4 Pages 845-860  
  Keywords Multiclass classification; Pairwise approach; One-versus-one  
  Abstract Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2014 Serial 2441  
Permanent link to this record
 

 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title Efficient segmentation-free keyword spotting in historical document collections Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal (up) PR  
  Volume 48 Issue 2 Pages 545–555  
  Keywords Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization  
  Abstract In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 Approved no  
  Call Number Admin @ si @ RAT2015a Serial 2544  
Permanent link to this record
 

 
Author Ivan Huerta; Marco Pedersoli; Jordi Gonzalez; Alberto Sanfeliu edit  doi
openurl 
  Title Combining where and what in change detection for unsupervised foreground learning in surveillance Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal (up) PR  
  Volume 48 Issue 3 Pages 709-719  
  Keywords Object detection; Unsupervised learning; Motion segmentation; Latent variables; Support vector machine; Multiple appearance models; Video surveillance  
  Abstract Change detection is the most important task for video surveillance analytics such as foreground and anomaly detection. Current foreground detectors learn models from annotated images since the goal is to generate a robust foreground model able to detect changes in all possible scenarios. Unfortunately, manual labelling is very expensive. Most advanced supervised learning techniques based on generic object detection datasets currently exhibit very poor performance when applied to surveillance datasets because of the unconstrained nature of such environments in terms of types and appearances of objects. In this paper, we take advantage of change detection for training multiple foreground detectors in an unsupervised manner. We use statistical learning techniques which exploit the use of latent parameters for selecting the best foreground model parameters for a given scenario. In essence, the main novelty of our proposed approach is to combine the where (motion segmentation) and what (learning procedure) in change detection in an unsupervised way for improving the specificity and generalization power of foreground detectors at the same time. We propose a framework based on latent support vector machines that, given a noisy initialization based on motion cues, learns the correct position, aspect ratio, and appearance of all moving objects in a particular scene. Specificity is achieved by learning the particular change detections of a given scenario, and generalization is guaranteed since our method can be applied to any possible scene and foreground object, as demonstrated in the experimental results outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ HPG2015 Serial 2589  
Permanent link to this record
 

 
Author Marco Pedersoli; Andrea Vedaldi; Jordi Gonzalez; Xavier Roca edit   pdf
doi  openurl
  Title A coarse-to-fine approach for fast deformable object detection Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal (up) PR  
  Volume 48 Issue 5 Pages 1844-1853  
  Keywords  
  Abstract We present a method that can dramatically accelerate object detection with part based models. The method is based on the observation that the cost of detection is likely to be dominated by the cost of matching each part to the image, and not by the cost of computing the optimal configuration of the parts as commonly assumed. Therefore accelerating detection requires minimizing the number of
part-to-image comparisons. To this end we propose a multiple-resolutions hierarchical part based model and a corresponding coarse-to-fine inference procedure that recursively eliminates from the search space unpromising part
placements. The method yields a ten-fold speedup over the standard dynamic programming approach and is complementary to the cascade-of-parts approach of [9]. Compared to the latter, our method does not have parameters to be determined empirically, which simplifies its use during the training of the model. Most importantly, the two techniques can be combined to obtain a very significant speedup, of two orders of magnitude in some cases. We evaluate our method extensively on the PASCAL VOC and INRIA datasets, demonstrating a very high increase in the detection speed with little degradation of the accuracy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.078; 602.005; 605.001; 302.012 Approved no  
  Call Number Admin @ si @ PVG2015 Serial 2628  
Permanent link to this record
 

 
Author Victor Ponce; Sergio Escalera; Marc Perez; Oriol Janes; Xavier Baro edit  doi
openurl 
  Title Non-Verbal Communication Analysis in Victim-Offender Mediations Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal (up) PRL  
  Volume 67 Issue 1 Pages 19-27  
  Keywords Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning  
  Abstract We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ PEP2015 Serial 2583  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen edit  doi
openurl 
  Title Compact color texture description for texture classification Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal (up) PRL  
  Volume 51 Issue Pages 16-22  
  Keywords  
  Abstract Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ KRW2015a Serial 2587  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras edit  doi
openurl 
  Title Multi-part body segmentation based on depth maps for soft biometry analysis Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal (up) PRL  
  Volume 56 Issue Pages 14-21  
  Keywords 3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis  
  Abstract This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB Approved no  
  Call Number Admin @ si @ MEG2015 Serial 2588  
Permanent link to this record
 

 
Author David Sanchez-Mendoza; David Masip; Agata Lapedriza edit   file
doi  openurl
  Title Emotion recognition from mid-level features Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal (up) PRL  
  Volume 67 Issue Part 1 Pages 66–74  
  Keywords Facial expression; Emotion recognition; Action units; Computer vision  
  Abstract In this paper we present a study on the use of Action Units as mid-level features for automatically recognizing basic and subtle emotions. We propose a representation model based on mid-level facial muscular movement features. We encode these movements dynamically using the Facial Action Coding System, and propose to use these intermediate features based on Action Units (AUs) to classify emotions. AUs activations are detected fusing a set of spatiotemporal geometric and appearance features. The algorithm is validated in two applications: (i) the recognition of 7 basic emotions using the publicly available Cohn-Kanade database, and (ii) the inference of subtle emotional cues in the Newscast database. In this second scenario, we consider emotions that are perceived cumulatively in longer periods of time. In particular, we Automatically classify whether video shoots from public News TV channels refer to Good or Bad news. To deal with the different video lengths we propose a Histogram of Action Units and compute it using a sliding window strategy on the frame sequences. Our approach achieves accuracies close to human perception.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number Admin @ si @ SML2015 Serial 2746  
Permanent link to this record
 

 
Author Victor Campmany; Sergio Silva; Juan Carlos Moure; Antoni Espinosa; David Vazquez; Antonio Lopez edit   pdf
openurl 
  Title GPU-based pedestrian detection for autonomous driving Type Abstract
  Year 2015 Publication Programming and Tunning Massive Parallel Systems Abbreviated Journal (up) PUMPS  
  Volume Issue Pages  
  Keywords Autonomous Driving; ADAS; CUDA; Pedestrian Detection  
  Abstract Pedestrian detection for autonomous driving has gained a lot of prominence during the last few years. Besides the fact that it is one of the hardest tasks within computer vision, it involves huge computational costs. The real-time constraints in the field are tight, and regular processors are not able to handle the workload obtaining an acceptable ratio of frames per second (fps). Moreover, multiple cameras are required to obtain accurate results, so the need to speed up the process is even higher. Taking the work in [1] as our baseline, we propose a CUDA implementation of a pedestrian detection system. Further, we introduce significant algorithmic adjustments and optimizations to adapt the problem to the GPU architecture. The aim is to provide a system capable of running in real-time obtaining reliable results.  
  Address Barcelona; Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title PUMPS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PUMPS  
  Notes ADAS; 600.076; 600.082; 600.085 Approved no  
  Call Number ADAS @ adas @ CSM2015 Serial 2644  
Permanent link to this record
 

 
Author Sergio Silva; Victor Campmany; Laura Sellart; Juan Carlos Moure; Antoni Espinosa; David Vazquez; Antonio Lopez edit   pdf
openurl 
  Title Autonomous GPU-based Driving Type Abstract
  Year 2015 Publication Programming and Tunning Massive Parallel Systems Abbreviated Journal (up) PUMPS  
  Volume Issue Pages  
  Keywords Autonomous Driving; ADAS; CUDA  
  Abstract Human factors cause most driving accidents; this is why nowadays is common to hear about autonomous driving as an alternative. Autonomous driving will not only increase safety, but also will develop a system of cooperative self-driving cars that will reduce pollution and congestion. Furthermore, it will provide more freedom to handicapped people, elderly or kids.

Autonomous Driving requires perceiving and understanding the vehicle environment (e.g., road, traffic signs, pedestrians, vehicles) using sensors (e.g., cameras, lidars, sonars, and radars), selflocalization (requiring GPS, inertial sensors and visual localization in precise maps), controlling the vehicle and planning the routes. These algorithms require high computation capability, and thanks to NVIDIA GPU acceleration this starts to become feasible.

NVIDIA® is developing a new platform for boosting the Autonomous Driving capabilities that is able of managing the vehicle via CAN-Bus: the Drive™ PX. It has 8 ARM cores with dual accelerated Tegra® X1 chips. It has 12 synchronized camera inputs for 360º vehicle perception, 4G and Wi-Fi capabilities allowing vehicle communications and GPS and inertial sensors inputs for self-localization.

Our research group has been selected for testing Drive™ PX. Accordingly, we are developing a Drive™ PX based autonomous car. Currently, we are porting our previous CPU based algorithms (e.g., Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, or Semantic Segmentation) for running in the GPU.
 
  Address Barcelona; Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PUMPS  
  Notes ADAS; 600.076; 600.082; 600.085 Approved no  
  Call Number ADAS @ adas @ SCS2015 Serial 2645  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa; E. Boyer edit  doi
openurl 
  Title Implicit B-Spline Surface Reconstruction Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal (up) TIP  
  Volume 24 Issue 1 Pages 22 - 32  
  Keywords  
  Abstract This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ RSB2015 Serial 2541  
Permanent link to this record
 

 
Author Miguel Oliveira; Angel Sappa; Victor Santos edit  doi
openurl 
  Title A probabilistic approach for color correction in image mosaicking applications Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal (up) TIP  
  Volume 14 Issue 2 Pages 508 - 523  
  Keywords Color correction; image mosaicking; color transfer; color palette mapping functions  
  Abstract Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ OSS2015b Serial 2554  
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer edit  doi
openurl 
  Title Accurate stereo matching by two step global optimization Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal (up) TIP  
  Volume 24 Issue 3 Pages 1153-1163  
  Keywords  
  Abstract In stereo matching cost filtering methods and energy minimization algorithms are considered as two different techniques. Due to their global extend energy minimization methods obtain good stereo matching results. However, they tend to fail in occluded regions, in which cost filtering approaches obtain better results. In this paper we intend to combine both approaches with the aim to improve overall stereo matching results. We show that a global optimization with a fully connected model can be solved by cost fil tering methods. Based on this observation we propose to perform stereo matching as a two-step energy minimization algorithm. We consider two MRF models: a fully connected model defined on the complete set of pixels in an image and a conventional locally connected model. We solve the energy minimization problem for the fully connected model, after which the marginal function of the solution is used as the unary potential in the locally connected MRF model. Experiments on the Middlebury stereo datasets show that the proposed method achieves state-of-the-arts results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ISE; LAMP; 600.079; 600.078 Approved no  
  Call Number Admin @ si @ MoW2015a Serial 2568  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: