toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alex Gomez-Villa; Adrian Martin; Javier Vazquez; Marcelo Bertalmio; Jesus Malo edit  url
doi  openurl
  Title On the synthesis of visual illusions using deep generative models Type Journal Article
  Year (down) 2022 Publication Journal of Vision Abbreviated Journal JOV  
  Volume 22(8) Issue 2 Pages 1-18  
  Keywords  
  Abstract Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.161; 611.007 Approved no  
  Call Number Admin @ si @ GMV2022 Serial 3682  
Permanent link to this record
 

 
Author Lu Yu; Xialei Liu; Joost Van de Weijer edit   pdf
doi  openurl
  Title Self-Training for Class-Incremental Semantic Segmentation Type Journal Article
  Year (down) 2022 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume Issue Pages  
  Keywords Class-incremental learning; Self-training; Semantic segmentation.  
  Abstract In class-incremental semantic segmentation, we have no access to the labeled data of previous tasks. Therefore, when incrementally learning new classes, deep neural networks suffer from catastrophic forgetting of previously learned knowledge. To address this problem, we propose to apply a self-training approach that leverages unlabeled data, which is used for rehearsal of previous knowledge. Specifically, we first learn a temporary model for the current task, and then, pseudo labels for the unlabeled data are computed by fusing information from the old model of the previous task and the current temporary model. In addition, conflict reduction is proposed to resolve the conflicts of pseudo labels generated from both the old and temporary models. We show that maximizing self-entropy can further improve results by smoothing the overconfident predictions. Interestingly, in the experiments, we show that the auxiliary data can be different from the training data and that even general-purpose, but diverse auxiliary data can lead to large performance gains. The experiments demonstrate the state-of-the-art results: obtaining a relative gain of up to 114% on Pascal-VOC 2012 and 8.5% on the more challenging ADE20K compared to previous state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 611.008; Approved no  
  Call Number Admin @ si @ YLW2022 Serial 3745  
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Long Long Yu; Arnau Ramisa; Luis Herranz; Joost Van de Weijer edit  doi
openurl 
  Title Main Product Detection with Graph Networks for Fashion Type Journal Article
  Year (down) 2022 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume Issue Pages  
  Keywords  
  Abstract Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; MACO; 600.147; 600.167; 600.164; 600.161; 600.141; 601.309 Approved no  
  Call Number Admin @ si @ YYR2022 Serial 3748  
Permanent link to this record
 

 
Author Yaxing Wang; Abel Gonzalez-Garcia; Luis Herranz; Joost Van de Weijer edit   pdf
url  openurl
  Title Controlling biases and diversity in diverse image-to-image translation Type Journal Article
  Year (down) 2021 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 202 Issue Pages 103082  
  Keywords  
  Abstract JCR 2019 Q2, IF=3.121
The task of unpaired image-to-image translation is highly challenging due to the lack of explicit cross-domain pairs of instances. We consider here diverse image translation (DIT), an even more challenging setting in which an image can have multiple plausible translations. This is normally achieved by explicitly disentangling content and style in the latent representation and sampling different styles codes while maintaining the image content. Despite the success of current DIT models, they are prone to suffer from bias. In this paper, we study the problem of bias in image-to-image translation. Biased datasets may add undesired changes (e.g. change gender or race in face images) to the output translations as a consequence of the particular underlying visual distribution in the target domain. In order to alleviate the effects of this problem we propose the use of semantic constraints that enforce the preservation of desired image properties. Our proposed model is a step towards unbiased diverse image-to-image translation (UDIT), and results in less unwanted changes in the translated images while still performing the wanted transformation. Experiments on several heavily biased datasets show the effectiveness of the proposed techniques in different domains such as faces, objects, and scenes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.109; 600.147 Approved no  
  Call Number Admin @ si @ WGH2021 Serial 3464  
Permanent link to this record
 

 
Author Sudeep Katakol; Basem Elbarashy; Luis Herranz; Joost Van de Weijer; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Distributed Learning and Inference with Compressed Images Type Journal Article
  Year (down) 2021 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 30 Issue Pages 3069 - 3083  
  Keywords  
  Abstract Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time, or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ADAS; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ KEH2021 Serial 3543  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: