|
Cesar de Souza, Adrien Gaidon, Yohann Cabon, Naila Murray, & Antonio Lopez. (2020). Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models. IJCV - International Journal of Computer Vision, 128, 1505–1536.
Abstract: Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos.
Keywords: Procedural generation; Human action recognition; Synthetic data; Physics
|
|
|
Yaxing Wang, Luis Herranz, & Joost Van de Weijer. (2020). Mix and match networks: multi-domain alignment for unpaired image-to-image translation. IJCV - International Journal of Computer Vision, 128, 2849–2872.
Abstract: This paper addresses the problem of inferring unseen cross-modal image-to-image translations between multiple modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-RGB training sets. We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities
|
|
|
Susana Alvarez, Anna Salvatella, Maria Vanrell, & Xavier Otazu. (2012). Low-dimensional and Comprehensive Color Texture Description. CVIU - Computer Vision and Image Understanding, 116(I), 54–67.
Abstract: Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
|
|
|
Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost Van de Weijer, Andrew Bagdanov, Antonio Lopez, & Michael Felsberg. (2013). Coloring Action Recognition in Still Images. IJCV - International Journal of Computer Vision, 105(3), 205–221.
Abstract: In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification.
|
|
|
Fahad Shahbaz Khan, Joost Van de Weijer, & Maria Vanrell. (2012). Modulating Shape Features by Color Attention for Object Recognition. IJCV - International Journal of Computer Vision, 98(1), 49–64.
Abstract: Bag-of-words based image representation is a successful approach for object recognition. Generally, the subsequent stages of the process: feature detection,feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, it was found that the combination of different image cues, such as shape and color, often obtains below expected results. This paper presents a novel method for recognizing object categories when using ultiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom up and top-down attention maps. Subsequently, these color attention maps are used to modulate the weights of the shape features. In regions with higher attention shape features are given more weight than in regions with low attention. We compare our approach with existing methods that combine color and shape cues on five data sets containing varied importance of both cues, namely, Soccer (color predominance), Flower (color and hape parity), PASCAL VOC 2007 and 2009 (shape predominance) and Caltech-101 (color co-interference). The experiments clearly demonstrate that in all five data sets our proposed framework significantly outperforms existing methods for combining color and shape information.
|
|