toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Karim Lekadir; Alfiia Galimzianova; Angels Betriu; Maria del Mar Vila; Laura Igual; Daniel L. Rubin; Elvira Fernandez-Giraldez; Petia Radeva; Sandy Napel edit  doi
openurl 
  Title A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound Type Journal Article
  Year 2017 Publication IEEE Journal Biomedical and Health Informatics Abbreviated Journal J-BHI  
  Volume (down) 21 Issue 1 Pages 48-55  
  Keywords  
  Abstract Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no menciona Approved no  
  Call Number Admin @ si @ LGB2017 Serial 2931  
Permanent link to this record
 

 
Author Alejandro Cartas; Juan Marin; Petia Radeva; Mariella Dimiccoli edit   pdf
url  openurl
  Title Batch-based activity recognition from egocentric photo-streams revisited Type Journal Article
  Year 2018 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume (down) 21 Issue 4 Pages 953–965  
  Keywords Egocentric vision; Lifelogging; Activity recognition; Deep learning; Recurrent neural networks  
  Abstract Wearable cameras can gather large amounts of image data that provide rich visual information about the daily activities of the wearer. Motivated by the large number of health applications that could be enabled by the automatic recognition of daily activities, such as lifestyle characterization for habit improvement, context-aware personal assistance and tele-rehabilitation services, we propose a system to classify 21 daily activities from photo-streams acquired by a wearable photo-camera. Our approach combines the advantages of a late fusion ensemble strategy relying on convolutional neural networks at image level with the ability of recurrent neural networks to account for the temporal evolution of high-level features in photo-streams without relying on event boundaries. The proposed batch-based approach achieved an overall accuracy of 89.85%, outperforming state-of-the-art end-to-end methodologies. These results were achieved on a dataset consists of 44,902 egocentric pictures from three persons captured during 26 days in average.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ CMR2018 Serial 3186  
Permanent link to this record
 

 
Author Amir A.Amini; Yasheng Chen; Mohamed Elayyadi; Petia Radeva edit   pdf
openurl 
  Title Tag Surface Reconstruction and Tracking of Myocardial Beads from SPAMM-MRI with Parametric B-Spline Surfaces Type Journal
  Year 2001 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume (down) 20 Issue 2 Pages 94–103  
  Keywords B-spline surfaces, cardiac motion, myocardial beads, myocardial infarction, tagged MRI.  
  Abstract Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization, and create tag planes intersecting image slices. The resulting grid of signal voids allows for tracking deformations of tissues in otherwise homogeneous-signal myocardial regions. In this paper, we propose a specific spatial modulation of magnetization (SPAMM) imaging protocol together with efficient techniques for measurement of three-dimensional (3-D) motion of material points of the human heart (referred to as myocardial beads) from images collected with the SPAMM method. The techniques make use of tagged images in orthogonal views by explicitly reconstructing 3-D B-spline surface representation of tag planes (tag planes in two orthogonal orientations intersecting the short-axis (SA) image slices and tag planes in an orientation orthogonal to the short-axis tag planes intersecting long-axis (LA) image slices). The developed methods allow for viewing deformations of 3-D tag surfaces, spatial correspondence of long-axis and short-axis image slice and tag positions, as well as nonrigid movement of myocardial beads as a function of time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ ACE2001; IAM @ iam @ ACE2001 Serial 180  
Permanent link to this record
 

 
Author Eduardo Aguilar; Beatriz Remeseiro; Marc Bolaños; Petia Radeva edit   pdf
url  doi
openurl 
  Title Grab, Pay, and Eat: Semantic Food Detection for Smart Restaurants Type Journal Article
  Year 2018 Publication IEEE Transactions on Multimedia Abbreviated Journal  
  Volume (down) 20 Issue 12 Pages 3266 - 3275  
  Keywords  
  Abstract The increase in awareness of people towards their nutritional habits has drawn considerable attention to the field of automatic food analysis. Focusing on self-service restaurants environment, automatic food analysis is not only useful for extracting nutritional information from foods selected by customers, it is also of high interest to speed up the service solving the bottleneck produced at the cashiers in times of high demand. In this paper, we address the problem of automatic food tray analysis in canteens and restaurants environment, which consists in predicting multiple foods placed on a tray image. We propose a new approach for food analysis based on convolutional neural networks, we name Semantic Food Detection, which integrates in the same framework food localization, recognition and segmentation. We demonstrate that our method improves the state of the art food detection by a considerable margin on the public dataset UNIMIB2016 achieving about 90% in terms of F-measure, and thus provides a significant technological advance towards the automatic billing in restaurant environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ ARB2018 Serial 3236  
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Ekaterina Zaytseva; Fernando Azpiroz; Petia Radeva; Jordi Vitria edit   pdf
doi  openurl
  Title Detection of wrinkle frames in endoluminal videos using betweenness centrality measures for images Type Journal Article
  Year 2014 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB  
  Volume (down) 18 Issue 6 Pages 1831-1838  
  Keywords Wireless Capsule Endoscopy; Small Bowel Motility Dysfunction; Contraction Detection; Structured Prediction; Betweenness Centrality  
  Abstract Intestinal contractions are one of the most important events to diagnose motility pathologies of the small intestine. When visualized by wireless capsule endoscopy (WCE), the sequence of frames that represents a contraction is characterized by a clear wrinkle structure in the central frames that corresponds to the folding of the intestinal wall. In this paper we present a new method to robustly detect wrinkle frames in full WCE videos by using a new mid-level image descriptor that is based on a centrality measure proposed for graphs. We present an extended validation, carried out in a very large database, that shows that the proposed method achieves state of the art performance for this task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; MILAB; 600.046;MV Approved no  
  Call Number Admin @ si @ SDZ2014 Serial 2385  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: