toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Escalera; Oriol Pujol; Petia Radeva; Jordi Vitria; Maria Teresa Anguera edit  doi
openurl 
  Title Automatic Detection of Dominance and Expected Interest Type Journal Article
  Year 2010 Publication EURASIP Journal on Advances in Signal Processing Abbreviated Journal EURASIPJ  
  Volume (down) Issue Pages 12  
  Keywords  
  Abstract Article ID 491819
Social Signal Processing is an emergent area of research that focuses on the analysis of social constructs. Dominance and interest are two of these social constructs. Dominance refers to the level of influence a person has in a conversation. Interest, when referred in terms of group interactions, can be defined as the degree of engagement that the members of a group collectively display during their interaction. In this paper, we argue that only using behavioral motion information, we are able to predict the interest of observers when looking at face-to-face interactions as well as the dominant people. First, we propose a simple set of movement-based features from body, face, and mouth activity in order to define a higher set of interaction indicators. The considered indicators are manually annotated by observers. Based on the opinions obtained, we define an automatic binary dominance detection problem and a multiclass interest quantification problem. Error-Correcting Output Codes framework is used to learn to rank the perceived observer's interest in face-to-face interactions meanwhile Adaboost is used to solve the dominant detection problem. The automatic system shows good correlation between the automatic categorization results and the manual ranking made by the observers in both dominance and interest detection problems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1110-8657 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;HUPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010d Serial 1283  
Permanent link to this record
 

 
Author Stefan Ameling; Stephan Wirth; Dietrich Paulus; Gerard Lacey; Fernando Vilariño edit  openurl
  Title Texture-based Polyp Detection in Colonoscopy Type Journal Article
  Year 2009 Publication Proc. BILDVERARBEITUNG FÜR DIE MEDIZIN Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area 800 Expedition Conference  
  Notes MV;SIAI Approved no  
  Call Number fernando @ fernando @ Serial 2428  
Permanent link to this record
 

 
Author Onur Ferhat; Fernando Vilariño edit   pdf
doi  openurl
  Title Low Cost Eye Tracking: The Current Panorama Type Journal Article
  Year 2016 Publication Computational Intelligence and Neuroscience Abbreviated Journal CIN  
  Volume (down) Issue Pages Article ID 8680541  
  Keywords  
  Abstract Despite the availability of accurate, commercial gaze tracker devices working with infrared (IR) technology, visible light gaze tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such as public datasets to test against, open source projects to build upon, and gaze tracking services to directly use in applications. With all this information, we aim to provide the contemporary and future researchers with a map detailing previously explored ideas and the required tools.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; 605.103; 600.047; 600.097;SIAI Approved no  
  Call Number Admin @ si @ FeV2016 Serial 2744  
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville edit   pdf
url  openurl
  Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Journal Article
  Year 2017 Publication Journal of Healthcare Engineering Abbreviated Journal JHCE  
  Volume (down) Issue Pages 2040-2295  
  Keywords Colonoscopy images; Deep Learning; Semantic Segmentation  
  Abstract Colorectal cancer (CRC) is the third cause of cancer death world-wide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss- rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aim- ing to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endolumninal scene, tar- geting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCN). We perform a compar- ative study to show that FCN significantly outperform, without any further post-processing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number VBS2017b Serial 2940  
Permanent link to this record
 

 
Author F. Javier Sanchez; Jorge Bernal; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; Gloria Fernandez Esparrach edit   pdf
url  openurl
  Title Bright spot regions segmentation and classification for specular highlights detection in colonoscopy videos Type Journal Article
  Year 2017 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume (down) Issue Pages 1-20  
  Keywords Specular highlights; bright spot regions segmentation; region classification; colonoscopy  
  Abstract A novel specular highlights detection method in colonoscopy videos is presented. The method is based on a model of appearance dening specular
highlights as bright spots which are highly contrasted with respect to adjacent regions. Our approach proposes two stages; segmentation, and then classication
of bright spot regions. The former denes a set of candidate regions obtained through a region growing process with local maxima as initial region seeds. This process creates a tree structure which keeps track, at each growing iteration, of the region frontier contrast; nal regions provided depend on restrictions over contrast value. Non-specular regions are ltered through a classication stage performed by a linear SVM classier using model-based features from each region. We introduce a new validation database with more than 25; 000 regions along with their corresponding pixel-wise annotations. We perform a comparative study against other approaches. Results show that our method is superior to other approaches, with our segmented regions being
closer to actual specular regions in the image. Finally, we also present how our methodology can also be used to obtain an accurate prediction of polyp histology.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; 600.096; 600.175 Approved no  
  Call Number Admin @ si @ SBS2017 Serial 2975  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: