toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Escalera; Jordi Gonzalez; Xavier Baro; Jamie Shotton edit  doi
openurl 
  Title Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume (up) 28 Issue Pages 1489 - 1491  
  Keywords  
  Abstract The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE;MV; Approved no  
  Call Number Admin @ si @ Serial 2851  
Permanent link to this record
 

 
Author Albert Clapes; Alex Pardo; Oriol Pujol; Sergio Escalera edit   pdf
url  openurl
  Title Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly Type Journal Article
  Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume (up) 29 Issue 5 Pages 765–788  
  Keywords Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology  
  Abstract We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ CPP2018 Serial 3125  
Permanent link to this record
 

 
Author Reza Azad; Maryam Asadi-Aghbolaghi; Shohreh Kasaei; Sergio Escalera edit  doi
openurl 
  Title Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps Type Journal Article
  Year 2019 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT  
  Volume (up) 29 Issue 6 Pages 1729-1740  
  Keywords Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding  
  Abstract Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.  
  Address June 2019,  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ AAK2018 Serial 3213  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Separability of Ternary Codes for Sparse Designs of Error-Correcting Output Codes Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume (up) 30 Issue 3 Pages 285–297  
  Keywords  
  Abstract Error Correcting Output Codes (ECOC) represent a successful framework to deal with multi-class categorization problems based on combining binary classifiers. In this paper, we present a new formulation of the ternary ECOC distance and the error-correcting capabilities in the ternary ECOC framework. Based on the new measure, we stress on how to design coding matrices preventing codification ambiguity and propose a new Sparse Random coding matrix with ternary distance maximization. The results on the UCI Repository and in a real speed traffic categorization problem show that when the coding design satisfies the new ternary measures, significant performance improvement is obtained independently of the decoding strategy applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2009a Serial 1153  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; O. Pujol; Petia Radeva; Gemma Sanchez; Josep Llados edit  doi
openurl 
  Title Blurred Shape Model for Binary and Grey-level Symbol Recognition Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume (up) 30 Issue 15 Pages 1424–1433  
  Keywords  
  Abstract Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; DAG; MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ EFP2009a Serial 1180  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: