|
Trevor Canham, Javier Vazquez, Elise Mathieu, & Marcelo Bertalmío. (2021). Matching visual induction effects on screens of different size. JOV - Journal of Vision, 21(6(10)), 1–22.
Abstract: In the film industry, the same movie is expected to be watched on displays of vastly different sizes, from cinema screens to mobile phones. But visual induction, the perceptual phenomenon by which the appearance of a scene region is affected by its surroundings, will be different for the same image shown on two displays of different dimensions. This phenomenon presents a practical challenge for the preservation of the artistic intentions of filmmakers, because it can lead to shifts in image appearance between viewing destinations. In this work, we show that a neural field model based on the efficient representation principle is able to predict induction effects and how, by regularizing its associated energy functional, the model is still able to represent induction but is now invertible. From this finding, we propose a method to preprocess an image in a screen–size dependent way so that its perception, in terms of visual induction, may remain constant across displays of different size. The potential of the method is demonstrated through psychophysical experiments on synthetic images and qualitative examples on natural images.
|
|
|
Alex Gomez-Villa, Adrian Martin, Javier Vazquez, Marcelo Bertalmio, & Jesus Malo. (2022). On the synthesis of visual illusions using deep generative models. JOV - Journal of Vision, 22(8)(2), 1–18.
Abstract: Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference.
|
|
|
Xavier Otazu, & Xim Cerda-Company. (2022). The contribution of luminance and chromatic channels to color assimilation. JOV - Journal of Vision, 22(6)(10), 1–15.
Abstract: Color induction is the phenomenon where the physical and the perceived colors of an object differ owing to the color distribution and the spatial configuration of the surrounding objects. Previous works studying this phenomenon on the lsY MacLeod–Boynton color space, show that color assimilation is present only when the magnocellular pathway (i.e., the Y axis) is activated (i.e., when there are luminance differences). Concretely, the authors showed that the effect is mainly induced by the koniocellular pathway (s axis), but not by the parvocellular pathway (l axis), suggesting that when magnocellular pathway is activated it inhibits the koniocellular pathway. In the present work, we study whether parvo-, konio-, and magnocellular pathways may influence on each other through the color induction effect. Our results show that color assimilation does not depend on a chromatic–chromatic interaction, and that chromatic assimilation is driven by the interaction between luminance and chromatic channels (mainly the magno- and the koniocellular pathways). Our results also show that chromatic induction is greatly decreased when all three visual pathways are simultaneously activated, and that chromatic pathways could influence each other through the magnocellular (luminance) pathway. In addition, we observe that chromatic channels can influence the luminance channel, hence inducing a small brightness induction. All these results show that color induction is a highly complex process where interactions between the several visual pathways are yet unknown and should be studied in greater detail.
|
|
|
Shida Beigpour, Christian Riess, Joost Van de Weijer, & Elli Angelopoulou. (2014). Multi-Illuminant Estimation with Conditional Random Fields. TIP - IEEE Transactions on Image Processing, 23(1), 83–95.
Abstract: Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene. We formulate this problem as an energy minimization task within a conditional random field over a set of local illuminant estimates. In order to quantitatively evaluate the proposed method, we created a novel data set of two-dominant-illuminant images comprised of laboratory, indoor, and outdoor scenes. Unlike prior work, our database includes accurate pixel-wise ground truth illuminant information. The performance of our method is evaluated on multiple data sets. Experimental results show that our framework clearly outperforms single illuminant estimators as well as a recently proposed multi-illuminant estimation approach.
Keywords: color constancy; CRF; multi-illuminant
|
|
|
Fahad Shahbaz Khan, Joost Van de Weijer, Muhammad Anwer Rao, Michael Felsberg, & Carlo Gatta. (2014). Semantic Pyramids for Gender and Action Recognition. TIP - IEEE Transactions on Image Processing, 23(8), 3633–3645.
Abstract: Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.
|
|