toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Fahad Shahbaz Khan; Shida Beigpour; Joost Van de Weijer; Michael Felsberg edit  doi
openurl 
  Title Painting-91: A Large Scale Database for Computational Painting Categorization Type Journal Article
  Year 2014 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume (up) 25 Issue 6 Pages 1385-1397  
  Keywords  
  Abstract Computer analysis of visual art, especially paintings, is an interesting cross-disciplinary research domain. Most of the research in the analysis of paintings involve medium to small range datasets with own specific settings. Interestingly, significant progress has been made in the field of object and scene recognition lately. A key factor in this success is the introduction and availability of benchmark datasets for evaluation. Surprisingly, such a benchmark setup is still missing in the area of computational painting categorization. In this work, we propose a novel large scale dataset of digital paintings. The dataset consists of paintings from 91 different painters. We further show three applications of our dataset namely: artist categorization, style classification and saliency detection. We investigate how local and global features popular in image classification perform for the tasks of artist and style categorization. For both categorization tasks, our experimental results suggest that combining multiple features significantly improves the final performance. We show that state-of-the-art computer vision methods can correctly classify 50 % of unseen paintings to its painter in a large dataset and correctly attribute its artistic style in over 60 % of the cases. Additionally, we explore the task of saliency detection on paintings and show experimental findings using state-of-the-art saliency estimation algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ KBW2014 Serial 2510  
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Improved Recursive Geodesic Distance Computation for Edge Preserving Filter Type Journal Article
  Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume (up) 26 Issue 8 Pages 3696 - 3706  
  Keywords Geodesic distance filter; color image filtering; image enhancement  
  Abstract All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ISE; 600.120; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ Moz2017 Serial 2921  
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz edit  doi
openurl 
  Title Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold Type Journal Article
  Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume (up) 26 Issue 6 Pages 2721-2735  
  Keywords  
  Abstract Before the big data era, scene recognition was often approached with two-step inference using localized intermediate representations (objects, topics, and so on). One of such approaches is the semantic manifold (SM), in which patches and images are modeled as points in a semantic probability simplex. Patch models are learned resorting to weak supervision via image labels, which leads to the problem of scene categories co-occurring in this semantic space. Fortunately, each category has its own co-occurrence patterns that are consistent across the images in that category. Thus, discovering and modeling these patterns are critical to improve the recognition performance in this representation. Since the emergence of large data sets, such as ImageNet and Places, these approaches have been relegated in favor of the much more powerful convolutional neural networks (CNNs), which can automatically learn multi-layered representations from the data. In this paper, we address many limitations of the original SM approach and related works. We propose discriminative patch representations using neural networks and further propose a hybrid architecture in which the semantic manifold is built on top of multiscale CNNs. Both representations can be computed significantly faster than the Gaussian mixture models of the original SM. To combine multiple scales, spatial relations, and multiple features, we formulate rich context models using Markov random fields. To solve the optimization problem, we analyze global and local approaches, where a top-down hierarchical algorithm has the best performance. Experimental results show that exploiting different types of contextual relations jointly consistently improves the recognition accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ SJH2017a Serial 2963  
Permanent link to this record
 

 
Author Mikhail Mozerov; Fei Yang; Joost Van de Weijer edit   pdf
doi  openurl
  Title Sparse Data Interpolation Using the Geodesic Distance Affinity Space Type Journal Article
  Year 2019 Publication IEEE Signal Processing Letters Abbreviated Journal SPL  
  Volume (up) 26 Issue 6 Pages 943 - 947  
  Keywords  
  Abstract In this letter, we adapt the geodesic distance-based recursive filter to the sparse data interpolation problem. The proposed technique is general and can be easily applied to any kind of sparse data. We demonstrate its superiority over other interpolation techniques in three experiments for qualitative and quantitative evaluation. In addition, we compare our method with the popular interpolation algorithm presented in the paper on EpicFlow optical flow, which is intuitively motivated by a similar geodesic distance principle. The comparison shows that our algorithm is more accurate and considerably faster than the EpicFlow interpolation technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MYW2019 Serial 3261  
Permanent link to this record
 

 
Author Fei Yang; Luis Herranz; Joost Van de Weijer; Jose Antonio Iglesias; Antonio Lopez; Mikhail Mozerov edit   pdf
url  doi
openurl 
  Title Variable Rate Deep Image Compression with Modulated Autoencoder Type Journal Article
  Year 2020 Publication IEEE Signal Processing Letters Abbreviated Journal SPL  
  Volume (up) 27 Issue Pages 331-335  
  Keywords  
  Abstract Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates. To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network. Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ADAS; 600.141; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ YHW2020 Serial 3346  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: