toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Parichehr Behjati; Pau Rodriguez; Carles Fernandez; Isabelle Hupont; Armin Mehri; Jordi Gonzalez edit  url
openurl 
  Title Single image super-resolution based on directional variance attention network Type Journal Article
  Year 2023 Publication Pattern Recognition Abbreviated Journal PR  
  Volume (up) 133 Issue Pages 108997  
  Keywords  
  Abstract Recent advances in single image super-resolution (SISR) explore the power of deep convolutional neural networks (CNNs) to achieve better performance. However, most of the progress has been made by scaling CNN architectures, which usually raise computational demands and memory consumption. This makes modern architectures less applicable in practice. In addition, most CNN-based SR methods do not fully utilize the informative hierarchical features that are helpful for final image recovery. In order to address these issues, we propose a directional variance attention network (DiVANet), a computationally efficient yet accurate network for SISR. Specifically, we introduce a novel directional variance attention (DiVA) mechanism to capture long-range spatial dependencies and exploit inter-channel dependencies simultaneously for more discriminative representations. Furthermore, we propose a residual attention feature group (RAFG) for parallelizing attention and residual block computation. The output of each residual block is linearly fused at the RAFG output to provide access to the whole feature hierarchy. In parallel, DiVA extracts most relevant features from the network for improving the final output and preventing information loss along the successive operations inside the network. Experimental results demonstrate the superiority of DiVANet over the state of the art in several datasets, while maintaining relatively low computation and memory footprint. The code is available at https://github.com/pbehjatii/DiVANet.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ BPF2023 Serial 3861  
Permanent link to this record
 

 
Author Josep M. Gonfaus; Marco Pedersoli; Jordi Gonzalez; Andrea Vedaldi; Xavier Roca edit   pdf
doi  openurl
  Title Factorized appearances for object detection Type Journal Article
  Year 2015 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume (up) 138 Issue Pages 92–101  
  Keywords Object recognition; Deformable part models; Learning and sharing parts; Discovering discriminative parts  
  Abstract Deformable object models capture variations in an object’s appearance that can be represented as image deformations. Other effects such as out-of-plane rotations, three-dimensional articulations, and self-occlusions are often captured by considering mixture of deformable models, one per object aspect. A more scalable approach is representing instead the variations at the level of the object parts, applying the concept of a mixture locally. Combining a few part variations can in fact cheaply generate a large number of global appearances.

A limited version of this idea was proposed by Yang and Ramanan [1], for human pose dectection. In this paper we apply it to the task of generic object category detection and extend it in several ways. First, we propose a model for the relationship between part appearances more general than the tree of Yang and Ramanan [1], which is more suitable for generic categories. Second, we treat part locations as well as their appearance as latent variables so that training does not need part annotations but only the object bounding boxes. Third, we modify the weakly-supervised learning of Felzenszwalb et al. and Girshick et al. [2], [3] to handle a significantly more complex latent structure.
Our model is evaluated on standard object detection benchmarks and is found to improve over existing approaches, yielding state-of-the-art results for several object categories.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ GPG2015 Serial 2705  
Permanent link to this record
 

 
Author Yecong Wan; Yuanshuo Cheng; Miingwen Shao; Jordi Gonzalez edit  doi
openurl 
  Title Image rain removal and illumination enhancement done in one go Type Journal Article
  Year 2022 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume (up) 252 Issue Pages 109244  
  Keywords  
  Abstract Rain removal plays an important role in the restoration of degraded images. Recently, CNN-based methods have achieved remarkable success. However, these approaches neglect that the appearance of real-world rain is often accompanied by low light conditions, which will further degrade the image quality, thereby hindering the restoration mission. Therefore, it is very indispensable to jointly remove the rain and enhance illumination for real-world rain image restoration. To this end, we proposed a novel spatially-adaptive network, dubbed SANet, which can remove the rain and enhance illumination in one go with the guidance of degradation mask. Meanwhile, to fully utilize negative samples, a contrastive loss is proposed to preserve more natural textures and consistent illumination. In addition, we present a new synthetic dataset, named DarkRain, to boost the development of rain image restoration algorithms in practical scenarios. DarkRain not only contains different degrees of rain, but also considers different lighting conditions, and more realistically simulates real-world rainfall scenarios. SANet is extensively evaluated on the proposed dataset and attains new state-of-the-art performance against other combining methods. Moreover, after a simple transformation, our SANet surpasses existing the state-of-the-art algorithms in both rain removal and low-light image enhancement.  
  Address Sept 2022  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.157; 600.168 Approved no  
  Call Number Admin @ si @ WCS2022 Serial 3744  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: