toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (up)
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title A deep co-attentive hand-based video question answering framework using multi-view skeleton Type Journal Article
  Year 2023 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 82 Issue Pages 1401–1429  
  Keywords  
  Abstract In this paper, we present a novel hand –based Video Question Answering framework, entitled Multi-View Video Question Answering (MV-VQA), employing the Single Shot Detector (SSD), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional Encoder Representations from Transformers (BERT), and Co-Attention mechanism with RGB videos as the inputs. Our model includes three main blocks: vision, language, and attention. In the vision block, we employ a novel representation to obtain some efficient multiview features from the hand object using the combination of five 3DCNNs and one LSTM network. To obtain the question embedding, we use the BERT model in language block. Finally, we employ a co-attention mechanism on vision and language features to recognize the final answer. For the first time, we propose such a hand-based Video-QA framework including the multi-view hand skeleton features combined with the question embedding and co-attention mechanism. Our framework is capable of processing the arbitrary numbers of questions in the dataset annotations. There are different application domains for this framework. Here, as an application domain, we applied our framework to dynamic hand gesture recognition for the first time. Since the main object in dynamic hand gesture recognition is the human hand, we performed a step-by-step analysis of the hand detection and multi-view hand skeleton impact on the model performance. Evaluation results on five datasets, including two datasets in VideoQA, two datasets in dynamic hand gesture, and one dataset in hand action recognition show that MV-VQA outperforms state-of-the-art alternatives.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ RKE2023b Serial 3881  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title ZS-GR: zero-shot gesture recognition from RGB-D videos Type Journal Article
  Year 2023 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 82 Issue Pages 43781-43796  
  Keywords  
  Abstract Gesture Recognition (GR) is a challenging research area in computer vision. To tackle the annotation bottleneck in GR, we formulate the problem of Zero-Shot Gesture Recognition (ZS-GR) and propose a two-stream model from two input modalities: RGB and Depth videos. To benefit from the vision Transformer capabilities, we use two vision Transformer models, for human detection and visual features representation. We configure a transformer encoder-decoder architecture, as a fast and accurate human detection model, to overcome the challenges of the current human detection models. Considering the human keypoints, the detected human body is segmented into nine parts. A spatio-temporal representation from human body is obtained using a vision Transformer and a LSTM network. A semantic space maps the visual features to the lingual embedding of the class labels via a Bidirectional Encoder Representations from Transformers (BERT) model. We evaluated the proposed model on five datasets, Montalbano II, MSR Daily Activity 3D, CAD-60, NTU-60, and isoGD obtaining state-of-the-art results compared to state-of-the-art ZS-GR models as well as the Zero-Shot Action Recognition (ZS-AR).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ RKE2023a Serial 3879  
Permanent link to this record
 

 
Author Xavier Perez Sala; Fernando De la Torre; Laura Igual; Sergio Escalera; Cecilio Angulo edit  url
openurl 
  Title Subspace Procrustes Analysis Type Journal Article
  Year 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 121 Issue 3 Pages 327–343  
  Keywords  
  Abstract Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA; no proj Approved no  
  Call Number Admin @ si @ PTI2017 Serial 2841  
Permanent link to this record
 

 
Author Yunan Li; Jun Wan; Qiguang Miao; Sergio Escalera; Huijuan Fang; Huizhou Chen; Xiangda Qi; Guodong Guo edit  url
openurl 
  Title CR-Net: A Deep Classification-Regression Network for Multimodal Apparent Personality Analysis Type Journal Article
  Year 2020 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 128 Issue Pages 2763–2780  
  Keywords  
  Abstract First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ LWM2020 Serial 3413  
Permanent link to this record
 

 
Author Carlos Martin Isla; Victor M Campello; Cristian Izquierdo; Kaisar Kushibar; Carla Sendra Balcells; Polyxeni Gkontra; Alireza Sojoudi; Mitchell J Fulton; Tewodros Weldebirhan Arega; Kumaradevan Punithakumar; Lei Li; Xiaowu Sun; Yasmina Al Khalil; Di Liu; Sana Jabbar; Sandro Queiros; Francesco Galati; Moona Mazher; Zheyao Gao; Marcel Beetz; Lennart Tautz; Christoforos Galazis; Marta Varela; Markus Hullebrand; Vicente Grau; Xiahai Zhuang; Domenec Puig; Maria A Zuluaga; Hassan Mohy Ud Din; Dimitris Metaxas; Marcel Breeuwer; Rob J van der Geest; Michelle Noga; Stephanie Bricq; Mark E Rentschler; Andrea Guala; Steffen E Petersen; Sergio Escalera; Jose F Rodriguez Palomares; Karim Lekadir edit  url
doi  openurl
  Title Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge Type Journal Article
  Year 2023 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal JBHI  
  Volume 27 Issue 7 Pages 3302-3313  
  Keywords  
  Abstract In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ MCI2023 Serial 3880  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: