toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Simone Balocco; O. Basset; G. Courbebaisse; E. Boni; Alejandro F. Frangi; P. Tortoli; C. Cachard edit  doi
openurl 
  Title (up) Estimation Of Viscoelastic Properties Of Vessel Walls Using a Computational Model and Doppler Ultrasound Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal PMB  
  Volume 55 Issue 12 Pages 3557–3575  
  Keywords  
  Abstract Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BBC2010 Serial 1312  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title (up) Extending anisotropic operators to recover smooth shapes Type Journal Article
  Year 2005 Publication Computer Vision and Image Understanding Abbreviated Journal  
  Volume 99 Issue 1 Pages 110-125  
  Keywords Contour completion; Functional extension; Differential operators; Riemmanian manifolds; Snake segmentation  
  Abstract Anisotropic differential operators are widely used in image enhancement processes. Recently, their property of smoothly extending functions to the whole image domain has begun to be exploited. Strong ellipticity of differential operators is a requirement that ensures existence of a unique solution. This condition is too restrictive for operators designed to extend image level sets: their own functionality implies that they should restrict to some vector field. The diffusion tensor that defines the diffusion operator links anisotropic processes with Riemmanian manifolds. In this context, degeneracy implies restricting diffusion to the varieties generated by the vector fields of positive eigenvalues, provided that an integrability condition is satisfied. We will use that any smooth vector field fulfills this integrability requirement to design line connection algorithms for contour completion. As application we present a segmenting strategy that assures convergent snakes whatever the geometry of the object to be modelled is.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GIR2005 Serial 1530  
Permanent link to this record
 

 
Author Carlo Gatta; Oriol Pujol; O. Rodriguez-Leor; J. M. Ferre; Petia Radeva edit  doi
openurl 
  Title (up) Fast Rigid Registration of Vascular Structures in IVUS Sequences Type Journal Article
  Year 2009 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal  
  Volume 13 Issue 6 Pages 106-1011  
  Keywords  
  Abstract Intravascular ultrasound (IVUS) technology permits visualization of high-resolution images of internal vascular structures. IVUS is a unique image-guiding tool to display longitudinal view of the vessels, and estimate the length and size of vascular structures with the goal of accurate diagnosis. Unfortunately, due to pulsatile contraction and expansion of the heart, the captured images are affected by different motion artifacts that make visual inspection difficult. In this paper, we propose an efficient algorithm that aligns vascular structures and strongly reduces the saw-shaped oscillation, simplifying the inspection of longitudinal cuts; it reduces the motion artifacts caused by the displacement of the catheter in the short-axis plane and the catheter rotation due to vessel tortuosity. The algorithm prototype aligns 3.16 frames/s and clearly outperforms state-of-the-art methods with similar computational cost. The speed of the algorithm is crucial since it allows to inspect the corrected sequence during patient intervention. Moreover, we improved an indirect methodology for IVUS rigid registration algorithm evaluation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1089-7771 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ GPL2009 Serial 1250  
Permanent link to this record
 

 
Author Simone Balocco; O. Camara; E. Vivas; T. Sola; L. Guimaraens; H. A. van Andel; C. B. Majoie; J. M. Pozo; B. H. Bijnens; Alejandro F. Frangi edit  url
openurl 
  Title (up) Feasibility of Estimating Regional Mechanical Properties of Cerebral Aneurysms In Vivo Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal MEDPHYS  
  Volume 37 Issue 4 Pages 1689–1706  
  Keywords  
  Abstract PURPOSE:
In this article, the authors studied the feasibility of estimating regional mechanical properties in cerebral aneurysms, integrating information extracted from imaging and physiological data with generic computational models of the arterial wall behavior.
METHODS:
A data assimilation framework was developed to incorporate patient-specific geometries into a given biomechanical model, whereas wall motion estimates were obtained from applying registration techniques to a pair of simulated MR images and guided the mechanical parameter estimation. A simple incompressible linear and isotropic Hookean model coupled with computational fluid-dynamics was employed as a first approximation for computational purposes. Additionally, an automatic clustering technique was developed to reduce the number of parameters to assimilate at the optimization stage and it considerably accelerated the convergence of the simulations. Several in silico experiments were designed to assess the influence of aneurysm geometrical characteristics and the accuracy of wall motion estimates on the mechanical property estimates. Hence, the proposed methodology was applied to six real cerebral aneurysms and tested against a varying number of regions with different elasticity, different mesh discretization, imaging resolution, and registration configurations.
RESULTS:
Several in silico experiments were conducted to investigate the feasibility of the proposed workflow, results found suggesting that the estimation of the mechanical properties was mainly influenced by the image spatial resolution and the chosen registration configuration. According to the in silico experiments, the minimal spatial resolution needed to extract wall pulsation measurements with enough accuracy to guide the proposed data assimilation framework was of 0.1 mm.
CONCLUSIONS:
Current routine imaging modalities do not have such a high spatial resolution and therefore the proposed data assimilation framework cannot currently be used on in vivo data to reliably estimate regional properties in cerebral aneurysms. Besides, it was observed that the incorporation of fluid-structure interaction in a biomechanical model with linear and isotropic material properties did not have a substantial influence in the final results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BCV2010 Serial 1313  
Permanent link to this record
 

 
Author Mariella Dimiccoli edit   pdf
doi  openurl
  Title (up) Figure-ground segregation: A fully nonlocal approach Type Journal Article
  Year 2016 Publication Vision Research Abbreviated Journal VR  
  Volume 126 Issue Pages 308-317  
  Keywords Figure-ground segregation; Nonlocal approach; Directional linear voting; Nonlinear diffusion  
  Abstract We present a computational model that computes and integrates in a nonlocal fashion several configural cues for automatic figure-ground segregation. Our working hypothesis is that the figural status of each pixel is a nonlocal function of several geometric shape properties and it can be estimated without explicitly relying on object boundaries. The methodology is grounded on two elements: multi-directional linear voting and nonlinear diffusion. A first estimation of the figural status of each pixel is obtained as a result of a voting process, in which several differently oriented line-shaped neighborhoods vote to express their belief about the figural status of the pixel. A nonlinear diffusion process is then applied to enforce the coherence of figural status estimates among perceptually homogeneous regions. Computer simulations fit human perception and match the experimental evidence that several cues cooperate in defining figure-ground segregation. The results of this work suggest that figure-ground segregation involves feedback from cells with larger receptive fields in higher visual cortical areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @ Dim2016b Serial 2623  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: