toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Escalera; Ana Puig; Oscar Amoros; Maria Salamo edit  doi
openurl 
  Title (up) Intelligent GPGPU Classification in Volume Visualization: a framework based on Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Computer Graphics Forum Abbreviated Journal CGF  
  Volume 30 Issue 7 Pages 2107-2115  
  Keywords  
  Abstract IF JCR 1.455 2010 25/99
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling. We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage. To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different data sets for several volume structures shows high computational performance and classification accuracy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA Approved no  
  Call Number Admin @ si @ EPA2011 Serial 1881  
Permanent link to this record
 

 
Author R.A.Bendezu; E.Barba; E.Burri; D.Cisternas; Carolina Malagelada; Santiago Segui; Anna Accarino; S.Quiroga; E.Monclus; I.Navazo edit  doi
openurl 
  Title (up) Intestinal gas content and distribution in health and in patients with functional gut symptoms Type Journal Article
  Year 2015 Publication Neurogastroenterology & Motility Abbreviated Journal NEUMOT  
  Volume 27 Issue 9 Pages 1249-1257  
  Keywords  
  Abstract BACKGROUND:
The precise relation of intestinal gas to symptoms, particularly abdominal bloating and distension remains incompletely elucidated. Our aim was to define the normal values of intestinal gas volume and distribution and to identify abnormalities in relation to functional-type symptoms.
METHODS:
Abdominal computed tomography scans were evaluated in healthy subjects (n = 37) and in patients in three conditions: basal (when they were feeling well; n = 88), during an episode of abdominal distension (n = 82) and after a challenge diet (n = 24). Intestinal gas content and distribution were measured by an original analysis program. Identification of patients outside the normal range was performed by machine learning techniques (one-class classifier). Results are expressed as median (IQR) or mean ± SE, as appropriate.
KEY RESULTS:
In healthy subjects the gut contained 95 (71, 141) mL gas distributed along the entire lumen. No differences were detected between patients studied under asymptomatic basal conditions and healthy subjects. However, either during a spontaneous bloating episode or once challenged with a flatulogenic diet, luminal gas was found to be increased and/or abnormally distributed in about one-fourth of the patients. These patients detected outside the normal range by the classifier exhibited a significantly greater number of abnormal features than those within the normal range (3.7 ± 0.4 vs 0.4 ± 0.1; p < 0.001).
CONCLUSIONS & INFERENCES:
The analysis of a large cohort of subjects using original techniques provides unique and heretofore unavailable information on the volume and distribution of intestinal gas in normal conditions and in relation to functional gastrointestinal symptoms.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ BBB2015 Serial 2667  
Permanent link to this record
 

 
Author Fernando Vilariño; Panagiota Spyridonos; Fosca De Iorio; Jordi Vitria; Fernando Azpiroz; Petia Radeva edit   pdf
doi  openurl
  Title (up) Intestinal Motility Assessment With Video Capsule Endoscopy: Automatic Annotation of Phasic Intestinal Contractions Type Journal Article
  Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 29 Issue 2 Pages 246-259  
  Keywords  
  Abstract Intestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions shown in a video provided by an ingestible capsule with a wireless micro-camera. The manual labeling of all the motility events requires large amount of time for offline screening in search of findings with low prevalence, which turns this procedure currently unpractical. In this paper, we propose a machine learning system to automatically detect the phasic intestinal contractions in video capsule endoscopy, driving a useful but not feasible clinical routine into a feasible clinical procedure. Our proposal is based on a sequential design which involves the analysis of textural, color, and blob features together with SVM classifiers. Our approach tackles the reduction of the imbalance rate of data and allows the inclusion of domain knowledge as new stages in the cascade. We present a detailed analysis, both in a quantitative and a qualitative way, by providing several measures of performance and the assessment study of interobserver variability. Our system performs at 70% of sensitivity for individual detection, whilst obtaining equivalent patterns to those of the experts for density of contractions.  
  Address  
  Corporate Author IEEE Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area 800 Expedition Conference  
  Notes MILAB;MV;OR;SIAI Approved no  
  Call Number BCNPCL @ bcnpcl @ VSD2010; IAM @ iam @ VSI2010 Serial 1281  
Permanent link to this record
 

 
Author Fosca De Iorio; C. Malagelada; Fernando Azpiroz; M. Maluenda; C. Violanti; Laura Igual; Jordi Vitria; Juan R. Malagelada edit  doi
openurl 
  Title (up) Intestinal motor activity, endoluminal motion and transit Type Journal Article
  Year 2009 Publication Neurogastroenterology & Motility Abbreviated Journal NEUMOT  
  Volume 21 Issue 12 Pages 1264–e119  
  Keywords  
  Abstract A programme for evaluation of intestinal motility has been recently developed based on endoluminal image analysis using computer vision methodology and machine learning techniques. Our aim was to determine the effect of intestinal muscle inhibition on wall motion, dynamics of luminal content and transit in the small bowel. Fourteen healthy subjects ingested the endoscopic capsule (Pillcam, Given Imaging) in fasting conditions. Seven of them received glucagon (4.8 microg kg(-1) bolus followed by a 9.6 microg kg(-1) h(-1) infusion during 1 h) and in the other seven, fasting activity was recorded, as controls. This dose of glucagon has previously shown to inhibit both tonic and phasic intestinal motor activity. Endoluminal image and displacement was analyzed by means of a computer vision programme specifically developed for the evaluation of muscular activity (contractile and non-contractile patterns), intestinal contents, endoluminal motion and transit. Thirty-minute periods before, during and after glucagon infusion were analyzed and compared with equivalent periods in controls. No differences were found in the parameters measured during the baseline (pretest) periods when comparing glucagon and control experiments. During glucagon infusion, there was a significant reduction in contractile activity (0.2 +/- 0.1 vs 4.2 +/- 0.9 luminal closures per min, P < 0.05; 0.4 +/- 0.1 vs 3.4 +/- 1.2% of images with radial wrinkles, P < 0.05) and a significant reduction of endoluminal motion (82 +/- 9 vs 21 +/- 10% of static images, P < 0.05). Endoluminal image analysis, by means of computer vision and machine learning techniques, can reliably detect reduced intestinal muscle activity and motion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ DMA2009 Serial 1251  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; J. Mauri; Petia Radeva edit  doi
openurl 
  Title (up) Intravascular Ultrasound Tissue Characterization with Sub-class Error-Correcting Output Codes Type Journal Article
  Year 2009 Publication Journal of Signal Processing Systems Abbreviated Journal  
  Volume 55 Issue 1-3 Pages 35–47  
  Keywords  
  Abstract Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on radial frequency, texture-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this sense, error-correcting output codes (ECOC) show to robustly combine binary classifiers to solve multi-class problems. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different sub-sets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers. Furthermore, the combination of RF and texture-based features also shows improvements over the state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-8018 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPM2009 Serial 1258  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: