toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Md. Mostafa Kamal Sarker; Hatem A. Rashwan; Farhan Akram; Vivek Kumar Singh; Syeda Furruka Banu; Forhad U H Chowdhury; Kabir Ahmed Choudhury; Sylvie Chambon; Petia Radeva; Domenec Puig; Mohamed Abdel-Nasser edit   pdf
url  openurl
  Title SLSNet: Skin lesion segmentation using a lightweight generative adversarial network Type Journal Article
  Year 2021 Publication Expert Systems With Applications Abbreviated Journal ESWA  
  Volume 183 Issue Pages 115433  
  Keywords  
  Abstract The determination of precise skin lesion boundaries in dermoscopic images using automated methods faces many challenges, most importantly, the presence of hair, inconspicuous lesion edges and low contrast in dermoscopic images, and variability in the color, texture and shapes of skin lesions. Existing deep learning-based skin lesion segmentation algorithms are expensive in terms of computational time and memory. Consequently, running such segmentation algorithms requires a powerful GPU and high bandwidth memory, which are not available in dermoscopy devices. Thus, this article aims to achieve precise skin lesion segmentation with minimum resources: a lightweight, efficient generative adversarial network (GAN) model called SLSNet, which combines 1-D kernel factorized networks, position and channel attention, and multiscale aggregation mechanisms with a GAN model. The 1-D kernel factorized network reduces the computational cost of 2D filtering. The position and channel attention modules enhance the discriminative ability between the lesion and non-lesion feature representations in spatial and channel dimensions, respectively. A multiscale block is also used to aggregate the coarse-to-fine features of input skin images and reduce the effect of the artifacts. SLSNet is evaluated on two publicly available datasets: ISBI 2017 and the ISIC 2018. Although SLSNet has only 2.35 million parameters, the experimental results demonstrate that it achieves segmentation results on a par with the state-of-the-art skin lesion segmentation methods with an accuracy of 97.61%, and Dice and Jaccard similarity coefficients of 90.63% and 81.98%, respectively. SLSNet can run at more than 110 frames per second (FPS) in a single GTX1080Ti GPU, which is faster than well-known deep learning-based image segmentation models, such as FCN. Therefore, SLSNet can be used for practical dermoscopic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ SRA2021 Serial (up) 3633  
Permanent link to this record
 

 
Author Andreea Glavan; Alina Matei; Petia Radeva; Estefania Talavera edit  url
openurl 
  Title Does our social life influence our nutritional behaviour? Understanding nutritional habits from egocentric photo-streams Type Journal Article
  Year 2021 Publication Expert Systems with Applications Abbreviated Journal ESWA  
  Volume 171 Issue Pages 114506  
  Keywords  
  Abstract Nutrition and social interactions are both key aspects of the daily lives of humans. In this work, we propose a system to evaluate the influence of social interaction in the nutritional habits of a person from a first-person perspective. In order to detect the routine of an individual, we construct a nutritional behaviour pattern discovery model, which outputs routines over a number of days. Our method evaluates similarity of routines with respect to visited food-related scenes over the collected days, making use of Dynamic Time Warping, as well as considering social engagement and its correlation with food-related activities. The nutritional and social descriptors of the collected days are evaluated and encoded using an LSTM Autoencoder. Later, the obtained latent space is clustered to find similar days unaffected by outliers using the Isolation Forest method. Moreover, we introduce a new score metric to evaluate the performance of the proposed algorithm. We validate our method on 104 days and more than 100 k egocentric images gathered by 7 users. Several different visualizations are evaluated for the understanding of the findings. Our results demonstrate good performance and applicability of our proposed model for social-related nutritional behaviour understanding. At the end, relevant applications of the model are discussed by analysing the discovered routine of particular individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ GMR2021 Serial (up) 3634  
Permanent link to this record
 

 
Author Giuseppe Pezzano; Oliver Diaz; Vicent Ribas Ripoll; Petia Radeva edit  url
doi  openurl
  Title CoLe-CNN+: Context learning – Convolutional neural network for COVID-19-Ground-Glass-Opacities detection and segmentation Type Journal Article
  Year 2021 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 136 Issue Pages 104689  
  Keywords  
  Abstract The most common tool for population-wide COVID-19 identification is the Reverse Transcription-Polymerase Chain Reaction test that detects the presence of the virus in the throat (or sputum) in swab samples. This test has a sensitivity between 59% and 71%. However, this test does not provide precise information regarding the extension of the pulmonary infection. Moreover, it has been proven that through the reading of a computed tomography (CT) scan, a clinician can provide a more complete perspective of the severity of the disease. Therefore, we propose a comprehensive system for fully-automated COVID-19 detection and lesion segmentation from CT scans, powered by deep learning strategies to support decision-making process for the diagnosis of COVID-19.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no menciona Approved no  
  Call Number Admin @ si @ PDR2021 Serial (up) 3635  
Permanent link to this record
 

 
Author Manisha Das; Deep Gupta; Petia Radeva; Ashwini M. Bakde edit  url
doi  openurl
  Title Optimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid ℓ1 - ℓ0 layer decomposition domain Type Journal Article
  Year 2021 Publication Biomedical Signal Processing and Control Abbreviated Journal BSPC  
  Volume 68 Issue Pages 102535  
  Keywords  
  Abstract Medical image fusion plays an important role in the clinical diagnosis of several critical neurological diseases by merging complementary information available in multimodal images. In this paper, a novel CT-MR neurological image fusion framework is proposed using an optimized biologically inspired feedforward neural model in two-scale hybrid ℓ1 − ℓ0 decomposition domain using gray wolf optimization to preserve the structural as well as texture information present in source CT and MR images. Initially, the source images are subjected to two-scale ℓ1 − ℓ0 decomposition with optimized parameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale-2 base layer. Two detail layers at scale-1 and 2 are fused using an optimized biologically inspired neural model and weighted average scheme based on local energy and modified spatial frequency to maximize the preservation of edges and local textures, respectively, while the scale-2 base layer gets fused using choose max rule to preserve the background information. To optimize the hyper-parameters of hybrid ℓ1 − ℓ0 decomposition and biologically inspired neural model, a fitness function is evaluated based on spatial frequency and edge index of the resultant fused image obtained by adding all the fused components. The fusion performance is analyzed by conducting extensive experiments on different CT-MR neurological images. Experimental results indicate that the proposed method provides better-fused images and outperforms the other state-of-the-art fusion methods in both visual and quantitative assessments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ DGR2021b Serial (up) 3636  
Permanent link to this record
 

 
Author Alina Matei; Andreea Glavan; Petia Radeva; Estefania Talavera edit  url
doi  openurl
  Title Towards Eating Habits Discovery in Egocentric Photo-Streams Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue Pages 17495-17506  
  Keywords  
  Abstract Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioral pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ MGR2021 Serial (up) 3637  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: