toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Roger Max Calle Quispe; Maya Aghaei Gavari; Eduardo Aguilar Torres edit  url
openurl 
  Title Towards real-time accurate safety helmets detection through a deep learning-based method Type Journal
  Year 2023 Publication Ingeniare. Revista chilena de ingenieria Abbreviated Journal  
  Volume 31 Issue 12 Pages  
  Keywords  
  Abstract Occupational safety is a fundamental activity in industries and revolves around the management of the necessary controls that must be present to mitigate occupational risks. These controls include verifying the use of Personal Protection Equipment (PPE). Within PPE, safety helmets are vital to reducing severe or fatal consequences caused by head injuries. This problem has been addressed recently by various research based on deep learning to detect the usage of safety helmets by the present people in the industrial field.

These works have achieved promising results for safety helmet detection using object detection methods from the YOLO family. In this work, we propose to analyze the performance of Scaled-YOLOv4, a novel model of the YOLO family that has yet to be previously studied for this problem. The performance of the Scaled-YOLOv4 is evaluated on two public databases, carefully selected among the previously proposed datasets for the occupational safety framework. We demonstrate the superiority of Scaled-YOLOv4 in terms of mAP and Fl-score concerning the previous works for both databases. Further, we summarize the currently available datasets for safety helmet detection purposes and discuss their suitability.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MILAB Approved no  
  Call Number Admin @ si @ CAA2023 Serial 3846  
Permanent link to this record
 

 
Author P. Canals; Simone Balocco; O. Diaz; J. Li; A. Garcia Tornel; M. Olive Gadea; M. Ribo edit  url
doi  openurl
  Title A fully automatic method for vascular tortuosity feature extraction in the supra-aortic region: unraveling possibilities in stroke treatment planning Type Journal Article
  Year 2023 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 104 Issue 102170 Pages  
  Keywords Artificial intelligence; Deep learning; Stroke; Thrombectomy; Vascular feature extraction; Vascular tortuosity  
  Abstract Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke patients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements obtained through automatic processing were compared to manual annotations from two observers for a thorough validation of the method. The proposed feature extraction method presented similar performance to the inter-rater variability observed in the measurement of 33 geometrical and morphological features of the arterial anatomy in the supra-aortic region. This system will contribute to the development of more complex models to advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the vascular tortuosity characterization of patients.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MILAB Approved no  
  Call Number Admin @ si @ CBD2023 Serial 4005  
Permanent link to this record
 

 
Author Mohammad Momeny; Ali Asghar Neshat; Ahmad Jahanbakhshi; Majid Mahmoudi; Yiannis Ampatzidis; Petia Radeva edit  url
openurl 
  Title Grading and fraud detection of saffron via learning-to-augment incorporated Inception-v4 CNN Type Journal Article
  Year 2023 Publication Food Control Abbreviated Journal FC  
  Volume 147 Issue Pages 109554  
  Keywords  
  Abstract Saffron is a well-known product in the food industry. It is one of the spices that are sometimes adulterated with the sole motive of gaining more economic profit. Today, machine vision systems are widely used in controlling the quality of food and agricultural products as a new, non-destructive, and inexpensive approach. In this study, a machine vision system based on deep learning was used to detect fraud and saffron quality. A dataset of 1869 images was created and categorized in 6 classes including: dried saffron stigma using a dryer; dried saffron stigma using pressing method; pure stem of saffron; sunflower; saffron stem mixed with food coloring; and corn silk mixed with food coloring. A Learning-to-Augment incorporated Inception-v4 Convolutional Neural Network (LAII-v4 CNN) was developed for grading and fraud detection of saffron in images captured by smartphones. The best policies of data augmentation were selected with the proposed LAII-v4 CNN using images corrupted by Gaussian, speckle, and impulse noise to address overfitting the model. The proposed LAII-v4 CNN compared with regular CNN-based methods and traditional classifiers. Ensemble of Bagged Decision Trees, Ensemble of Boosted Decision Trees, k-Nearest Neighbor, Random Under-sampling Boosted Trees, and Support Vector Machine were used for classification of the features extracted by Histograms of Oriented Gradients and Local Binary Patterns, and selected by the Principal Component Analysis. The results showed that the proposed LAII-v4 CNN with an accuracy of 99.5% has achieved the best performance by employing batch normalization, Dropout, and leaky ReLU.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MILAB Approved no  
  Call Number Admin @ si @ MNJ2023 Serial 3882  
Permanent link to this record
 

 
Author Mariella Dimiccoli edit   pdf
doi  openurl
  Title Figure-ground segregation: A fully nonlocal approach Type Journal Article
  Year 2016 Publication Vision Research Abbreviated Journal VR  
  Volume 126 Issue Pages 308-317  
  Keywords Figure-ground segregation; Nonlocal approach; Directional linear voting; Nonlinear diffusion  
  Abstract We present a computational model that computes and integrates in a nonlocal fashion several configural cues for automatic figure-ground segregation. Our working hypothesis is that the figural status of each pixel is a nonlocal function of several geometric shape properties and it can be estimated without explicitly relying on object boundaries. The methodology is grounded on two elements: multi-directional linear voting and nonlinear diffusion. A first estimation of the figural status of each pixel is obtained as a result of a voting process, in which several differently oriented line-shaped neighborhoods vote to express their belief about the figural status of the pixel. A nonlinear diffusion process is then applied to enforce the coherence of figural status estimates among perceptually homogeneous regions. Computer simulations fit human perception and match the experimental evidence that several cues cooperate in defining figure-ground segregation. The results of this work suggest that figure-ground segregation involves feedback from cells with larger receptive fields in higher visual cortical areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MILAB; Approved no  
  Call Number Admin @ si @ Dim2016b Serial 2623  
Permanent link to this record
 

 
Author Tadashi Araki; Sumit K. Banchhor; Narendra D. Londhe; Nobutaka Ikeda; Petia Radeva; Devarshi Shukla; Luca Saba; Antonella Balestrieri; Andrew Nicolaides; Shoaib Shafique; John R. Laird; Jasjit S. Suri edit  doi
openurl 
  Title Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos Type Journal Article
  Year 2016 Publication Journal of Medical Systems Abbreviated Journal JMS  
  Volume 40 Issue 3 Pages 51:1-51:20  
  Keywords Interventional cardiology; Atherosclerosis; Coronary arteries; IVUS; calcium volume; Soft computing; Performance Reliability; Accuracy  
  Abstract Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm3, 27.79 ± 10.94 mm3, 46.44 ± 19.13 mm3 and 35.92 ± 16.44 mm3 respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student’s t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80 %. Out procedure and protocol is along the line with method previously published clinically.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MILAB; Approved no  
  Call Number Admin @ si @ ABL2016 Serial 2729  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: