toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pau Rodriguez; Miguel Angel Bautista; Sergio Escalera; Jordi Gonzalez edit   pdf
url  doi
openurl 
  Title Beyond Oneshot Encoding: lower dimensional target embedding Type Journal Article
  Year 2018 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 75 Issue Pages 21-31  
  Keywords Error correcting output codes; Output embeddings; Deep learning; Computer vision  
  Abstract Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE; HuPBA; 600.098; 602.133; 602.121; 600.119 Approved no  
  Call Number Admin @ si @ RBE2018 Serial 3120  
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer edit  doi
openurl 
  Title Accurate stereo matching by two step global optimization Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue 3 Pages 1153-1163  
  Keywords  
  Abstract In stereo matching cost filtering methods and energy minimization algorithms are considered as two different techniques. Due to their global extend energy minimization methods obtain good stereo matching results. However, they tend to fail in occluded regions, in which cost filtering approaches obtain better results. In this paper we intend to combine both approaches with the aim to improve overall stereo matching results. We show that a global optimization with a fully connected model can be solved by cost fil tering methods. Based on this observation we propose to perform stereo matching as a two-step energy minimization algorithm. We consider two MRF models: a fully connected model defined on the complete set of pixels in an image and a conventional locally connected model. We solve the energy minimization problem for the fully connected model, after which the marginal function of the solution is used as the unary potential in the locally connected MRF model. Experiments on the Middlebury stereo datasets show that the proposed method achieves state-of-the-arts results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE; LAMP; 600.079; 600.078 Approved no  
  Call Number Admin @ si @ MoW2015a Serial 2568  
Permanent link to this record
 

 
Author Eduard Vazquez; Theo Gevers; M. Lucassen; Joost Van de Weijer; Ramon Baldrich edit  doi
openurl 
  Title Saliency of Color Image Derivatives: A Comparison between Computational Models and Human Perception Type Journal Article
  Year 2010 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 27 Issue 3 Pages 613–621  
  Keywords  
  Abstract In this paper, computational methods are proposed to compute color edge saliency based on the information content of color edges. The computational methods are evaluated on bottom-up saliency in a psychophysical experiment, and on a more complex task of salient object detection in real-world images. The psychophysical experiment demonstrates the relevance of using information theory as a saliency processing model and that the proposed methods are significantly better in predicting color saliency (with a human-method correspondence up to 74.75% and an observer agreement of 86.8%) than state-of-the-art models. Furthermore, results from salient object detection confirm that an early fusion of color and contrast provide accurate performance to compute visual saliency with a hit rate up to 95.2%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE;CIC Approved no  
  Call Number CAT @ cat @ VGL2010 Serial 1275  
Permanent link to this record
 

 
Author Arjan Gijsenij; Theo Gevers; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Computational Color Constancy: Survey and Experiments Type Journal Article
  Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 20 Issue 9 Pages 2475-2489  
  Keywords computational color constancy;computer vision application;gamut-based method;learning-based method;static method;colour vision;computer vision;image colour analysis;learning (artificial intelligence);lighting  
  Abstract Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the- art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available data sets. Finally, various freely available methods, of which some are considered to be state-of-the-art, are evaluated on two data sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE;CIC Approved no  
  Call Number Admin @ si @ GGW2011 Serial 1717  
Permanent link to this record
 

 
Author Xavier Boix; Josep M. Gonfaus; Joost Van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez edit   pdf
url  doi
openurl 
  Title Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation Type Journal Article
  Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 96 Issue 1 Pages 83-102  
  Keywords  
  Abstract The Hierarchical Conditional Random Field(HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales.
At higher scales in the image, this representation yields an oversimpli ed model since multiple classes can be reasonably expected to appear within large regions. This simpli ed model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations of classes. We also propose an e ective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-21.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE;CIC;ADAS Approved no  
  Call Number Admin @ si @ BGW2012 Serial 1718  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: