toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Simone Balocco; Carlo Gatta; Francesco Ciompi; A. Wahle; Petia Radeva; S. Carlier; G. Unal; E. Sanidas; F. Mauri; X. Carillo; T. Kovarnik; C. Wang; H. Chen; T. P. Exarchos; D. I. Fotiadis; F. Destrempes; G. Cloutier; Oriol Pujol; Marina Alberti; E. G. Mendizabal-Ruiz; M. Rivera; T. Aksoy; R. W. Downe; I. A. Kakadiaris edit   pdf
doi  openurl
  Title Standardized evaluation methodology and reference database for evaluating IVUS image segmentation Type Journal Article
  Year 2014 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 38 Issue 2 Pages 70-90  
  Keywords (up) IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation  
  Abstract This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; LAMP; HuPBA; 600.046; 600.063; 600.079 Approved no  
  Call Number Admin @ si @ BGC2013 Serial 2314  
Permanent link to this record
 

 
Author Pedro Martins; Paulo Carvalho; Carlo Gatta edit   pdf
doi  openurl
  Title On the completeness of feature-driven maximally stable extremal regions Type Journal Article
  Year 2016 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 74 Issue Pages 9-16  
  Keywords (up) Local features; Completeness; Maximally Stable Extremal Regions  
  Abstract By definition, local image features provide a compact representation of the image in which most of the image information is preserved. This capability offered by local features has been overlooked, despite being relevant in many application scenarios. In this paper, we analyze and discuss the performance of feature-driven Maximally Stable Extremal Regions (MSER) in terms of the coverage of informative image parts (completeness). This type of features results from an MSER extraction on saliency maps in which features related to objects boundaries or even symmetry axes are highlighted. These maps are intended to be suitable domains for MSER detection, allowing this detector to provide a better coverage of informative image parts. Our experimental results, which were based on a large-scale evaluation, show that feature-driven MSER have relatively high completeness values and provide more complete sets than a traditional MSER detection even when sets of similar cardinality are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP;MILAB; Approved no  
  Call Number Admin @ si @ MCG2016 Serial 2748  
Permanent link to this record
 

 
Author Lorenzo Seidenari; Giuseppe Serra; Andrew Bagdanov; Alberto del Bimbo edit   pdf
doi  openurl
  Title Local pyramidal descriptors for image recognition Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 5 Pages 1033 - 1040  
  Keywords (up) Object categorization; local features; kernel methods  
  Abstract In this paper we present a novel method to improve the flexibility of descriptor matching for image recognition by using local multiresolution
pyramids in feature space. We propose that image patches be represented at multiple levels of descriptor detail and that these levels be defined in terms of local spatial pooling resolution. Preserving multiple levels of detail in local descriptors is a way of hedging one’s bets on which levels will most relevant for matching during learning and recognition. We introduce the Pyramid SIFT (P-SIFT) descriptor and show that its use in four state-of-the-art image recognition pipelines improves accuracy and yields state-of-the-art results. Our technique is applicable independently of spatial pyramid matching and we show that spatial pyramids can be combined with local pyramids to obtain
further improvement.We achieve state-of-the-art results on Caltech-101
(80.1%) and Caltech-256 (52.6%) when compared to other approaches based on SIFT features over intensity images. Our technique is efficient and is extremely easy to integrate into image recognition pipelines.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.079 Approved no  
  Call Number Admin @ si @ SSB2014 Serial 2524  
Permanent link to this record
 

 
Author Kai Wang; Joost Van de Weijer; Luis Herranz edit   pdf
url  openurl
  Title ACAE-REMIND for online continual learning with compressed feature replay Type Journal Article
  Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 150 Issue Pages 122-129  
  Keywords (up) online continual learning; autoencoders; vector quantization  
  Abstract Online continual learning aims to learn from a non-IID stream of data from a number of different tasks, where the learner is only allowed to consider data once. Methods are typically allowed to use a limited buffer to store some of the images in the stream. Recently, it was found that feature replay, where an intermediate layer representation of the image is stored (or generated) leads to superior results than image replay, while requiring less memory. Quantized exemplars can further reduce the memory usage. However, a drawback of these methods is that they use a fixed (or very intransigent) backbone network. This significantly limits the learning of representations that can discriminate between all tasks. To address this problem, we propose an auxiliary classifier auto-encoder (ACAE) module for feature replay at intermediate layers with high compression rates. The reduced memory footprint per image allows us to save more exemplars for replay. In our experiments, we conduct task-agnostic evaluation under online continual learning setting and get state-of-the-art performance on ImageNet-Subset, CIFAR100 and CIFAR10 dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 601.379; 600.120; 600.141 Approved no  
  Call Number Admin @ si @ WWH2021 Serial 3575  
Permanent link to this record
 

 
Author Idoia Ruiz; Bogdan Raducanu; Rakesh Mehta; Jaume Amores edit   pdf
url  openurl
  Title Optimizing speed/accuracy trade-off for person re-identification via knowledge distillation Type Journal Article
  Year 2020 Publication Engineering Applications of Artificial Intelligence Abbreviated Journal EAAI  
  Volume 87 Issue Pages 103309  
  Keywords (up) Person re-identification; Network distillation; Image retrieval; Model compression; Surveillance  
  Abstract Finding a person across a camera network plays an important role in video surveillance. For a real-world person re-identification application, in order to guarantee an optimal time response, it is crucial to find the balance between accuracy and speed. We analyse this trade-off, comparing a classical method, that comprises hand-crafted feature description and metric learning, in particular, LOMO and XQDA, to deep learning based techniques, using image classification networks, ResNet and MobileNets. Additionally, we propose and analyse network distillation as a learning strategy to reduce the computational cost of the deep learning approach at test time. We evaluate both methods on the Market-1501 and DukeMTMC-reID large-scale datasets, showing that distillation helps reducing the computational cost at inference time while even increasing the accuracy performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ RRM2020 Serial 3401  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: