toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mariella Dimiccoli; Benoît Girard; Alain Berthoz; Daniel Bennequin edit   pdf
doi  openurl
  Title Striola Magica: a functional explanation of otolith organs Type Journal Article
  Year 2013 Publication Journal of Computational Neuroscience Abbreviated Journal JCN  
  Volume 35 Issue (up) 2 Pages 125-154  
  Keywords Otolith organs ;Striola; Vestibular pathway  
  Abstract Otolith end organs of vertebrates sense linear accelerations of the head and gravitation. The hair cells on their epithelia are responsible for transduction. In mammals, the striola, parallel to the line where hair cells reverse their polarization, is a narrow region centered on a curve with curvature and torsion. It has been shown that the striolar region is functionally different from the rest, being involved in a phasic vestibular pathway. We propose a mathematical and computational model that explains the necessity of this amazing geometry for the striola to be able to carry out its function. Our hypothesis, related to the biophysics of the hair cells and to the physiology of their afferent neurons, is that striolar afferents collect information from several type I hair cells to detect the jerk in a large domain of acceleration directions. This predicts a mean number of two calyces for afferent neurons, as measured in rodents. The domain of acceleration directions sensed by our striolar model is compatible with the experimental results obtained on monkeys considering all afferents. Therefore, the main result of our study is that phasic and tonic vestibular afferents cover the same geometrical fields, but at different dynamical and frequency domains.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-6873. 2013 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @DBG2013 Serial 2787  
Permanent link to this record
 

 
Author Frederic Sampedro; Anna Domenech; Sergio Escalera; Ignasi Carrio edit  doi
openurl 
  Title Computing quantitative indicators of structural renal damage in pediatric DMSA scans Type Journal Article
  Year 2017 Publication Revista Española de Medicina Nuclear e Imagen Molecular Abbreviated Journal REMNIM  
  Volume 36 Issue (up) 2 Pages 72-77  
  Keywords  
  Abstract OBJECTIVES:
The proposal and implementation of a computational framework for the quantification of structural renal damage from 99mTc-dimercaptosuccinic acid (DMSA) scans. The aim of this work is to propose, implement, and validate a computational framework for the quantification of structural renal damage from DMSA scans and in an observer-independent manner.
MATERIALS AND METHODS:
From a set of 16 pediatric DMSA-positive scans and 16 matched controls and using both expert-guided and automatic approaches, a set of image-derived quantitative indicators was computed based on the relative size, intensity and histogram distribution of the lesion. A correlation analysis was conducted in order to investigate the association of these indicators with other clinical data of interest in this scenario, including C-reactive protein (CRP), white cell count, vesicoureteral reflux, fever, relative perfusion, and the presence of renal sequelae in a 6-month follow-up DMSA scan.
RESULTS:
A fully automatic lesion detection and segmentation system was able to successfully classify DMSA-positive from negative scans (AUC=0.92, sensitivity=81% and specificity=94%). The image-computed relative size of the lesion correlated with the presence of fever and CRP levels (p<0.05), and a measurement derived from the distribution histogram of the lesion obtained significant performance results in the detection of permanent renal damage (AUC=0.86, sensitivity=100% and specificity=75%).
CONCLUSIONS:
The proposal and implementation of a computational framework for the quantification of structural renal damage from DMSA scans showed a promising potential to complement visual diagnosis and non-imaging indicators.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; no menciona Approved no  
  Call Number Admin @ si @ SDE2017 Serial 2842  
Permanent link to this record
 

 
Author Simone Balocco; Francesco Ciompi; Juan Rigla; Xavier Carrillo; Josefina Mauri; Petia Radeva edit  url
doi  openurl
  Title Assessment of intracoronary stent location and extension in intravascular ultrasound sequences Type Journal Article
  Year 2019 Publication Medical Physics Abbreviated Journal MEDPHYS  
  Volume 46 Issue (up) 2 Pages 484-493  
  Keywords IVUS; malapposition; stent; ultrasound  
  Abstract PURPOSE:

An intraluminal coronary stent is a metal scaffold deployed in a stenotic artery during percutaneous coronary intervention (PCI). In order to have an effective deployment, a stent should be optimally placed with regard to anatomical structures such as bifurcations and stenoses. Intravascular ultrasound (IVUS) is a catheter-based imaging technique generally used for PCI guiding and assessing the correct placement of the stent. A novel approach that automatically detects the boundaries and the position of the stent along the IVUS pullback is presented. Such a technique aims at optimizing the stent deployment.
METHODS:

The method requires the identification of the stable frames of the sequence and the reliable detection of stent struts. Using these data, a measure of likelihood for a frame to contain a stent is computed. Then, a robust binary representation of the presence of the stent in the pullback is obtained applying an iterative and multiscale quantization of the signal to symbols using the Symbolic Aggregate approXimation algorithm.
RESULTS:

The technique was extensively validated on a set of 103 IVUS of sequences of in vivo coronary arteries containing metallic and bioabsorbable stents acquired through an international multicentric collaboration across five clinical centers. The method was able to detect the stent position with an overall F-measure of 86.4%, a Jaccard index score of 75% and a mean distance of 2.5 mm from manually annotated stent boundaries, and in bioabsorbable stents with an overall F-measure of 88.6%, a Jaccard score of 77.7 and a mean distance of 1.5 mm from manually annotated stent boundaries. Additionally, a map indicating the distance between the lumen and the stent along the pullback is created in order to show the angular sectors of the sequence in which the malapposition is present.
CONCLUSIONS:

Results obtained comparing the automatic results vs the manual annotation of two observers shows that the method approaches the interobserver variability. Similar performances are obtained on both metallic and bioabsorbable stents, showing the flexibility and robustness of the method.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ BCR2019 Serial 3231  
Permanent link to this record
 

 
Author Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Texture Segmentation by Statistical Deformable Models Type Journal
  Year 2004 Publication International Journal of Image and Graphics Abbreviated Journal IJIG  
  Volume 4 Issue (up) 3 Pages 433-452  
  Keywords Texture segmentation, parametric active contours, statistic snakes  
  Abstract Deformable models have received much popularity due to their ability to include high-level knowledge on the application domain into low-level image processing. Still, most proposed active contour models do not sufficiently profit from the application information and they are too generalized, leading to non-optimal final results of segmentation, tracking or 3D reconstruction processes. In this paper we propose a new deformable model defined in a statistical framework to segment objects of natural scenes. We perform a supervised learning of local appearance of the textured objects and construct a feature space using a set of co-occurrence matrix measures. Linear Discriminant Analysis allows us to obtain an optimal reduced feature space where a mixture model is applied to construct a likelihood map. Instead of using a heuristic potential field, our active model is deformed on a regularized version of the likelihood map in order to segment objects characterized by the same texture pattern. Different tests on synthetic images, natural scene and medical images show the advantages of our statistic deformable model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ PuR2004a Serial 505  
Permanent link to this record
 

 
Author Jaume Amores; N. Sebe; Petia Radeva edit  doi
openurl 
  Title Boosting the distance estimation: Application to the K-Nearest Neighbor Classifier Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue (up) 3 Pages 201–209  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ ASR2006 Serial 643  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: