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Abstract Otolith end organs of vertebrates sense linear
accelerations of the head and gravitation. The hair cells on
their epithelia are responsible for transduction. In mammals,
the striola, parallel to the line where hair cells reverse their
polarization, is a narrow region centered on a curve with
curvature and torsion. It has been shown that the striolar
region is functionally different from the rest, being involved
in a phasic vestibular pathway. We propose a mathematical
and computational model that explains the necessity of this
amazing geometry for the striola to be able to carry out its
function. Our hypothesis, related to the biophysics of the
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Université Paris Descartes (Paris V), UMR 8145 Paris, France
e-mail: mariella.dimiccoli@math-info.univ-paris5.fr

B. Girard
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hair cells and to the physiology of their afferent neurons, is
that striolar afferents collect information from several type I
hair cells to detect the jerk in a large domain of accelera-
tion directions. This predicts a mean number of two calyces
for afferent neurons, as measured in rodents. The domain
of acceleration directions sensed by our striolar model is
compatible with the experimental results obtained on mon-
keys considering all afferents. Therefore, the main result of
our study is that phasic and tonic vestibular afferents cover
the same geometrical fields, but at different dynamical and
frequency domains.

Keywords Otolith organs · Striola · Vestibular pathway

The vestibular end organs in the inner ear have undergone
various shape modifications during evolution, depending on
the locomotion system and on the ecological niche of each
considered species. Specifically, our proposal deals with the
geometry of the otolith organs (the saccule and the utricle),
and with the twisted band of hair cells known as the striola,
running across the otolith epithelial surface (the macula).
The present study proposes a functional model of the striola
of mammals from which can be proved the necessity for the
striola to be centered on a curved and twisted curve. This
model supposes that striolar afferents measure the derivative
of acceleration directions (jerk), rather than the accelera-
tion directions, by means of the intersection of the receptive
fields of several striolar hair cells. It provides an explanation
of the observation that in various rodent species the affer-
ents of the striola contact, on average, two hair cells of the
striola. Finally, computer simulations of the receptive fields
of such a system fit well with experimental data acquired
by Fernandez and Goldberg in 1976. We also examined the
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consequences of our model for the physiology and evolution
of the striolar region.

1 Introduction

One important problem in Biology is to relate the function
of organs with their structure; here we propose to deduce the
amazing shape of the hair cell polarization field of vestibular
otolith sensors in mammals from simple hypotheses con-
cerning the dynamical function of the hair cells and of their
afferent neurons.

Otolith end organs can sense the effect of linear accel-
eration of the head including gravitation. The structure of
these organs has assumed different shapes and organiza-
tion through the evolution. In mammals, the principal otolith
organs are the utricle and the saccule whose epithelial sur-
faces, named maculae, are approximatively lying on the
vertical plane and on the horizontal plane respectively. The
receptors on the macula are the hair cells whose bundles of
stereocilia form oriented arrows, pointing to a longest hair,
the kinocilium. Thus each hair cell presents a morphological
polarization vector.

Under the effect of linear accelerations or gravity, the
otolith membranes containing crystals drive a gel and
deflect the cilia of the hair cells. The hair cells depolar-
ize when their hair bundles move in the direction of the
kinocilium. Then the hair cells vary their potential accord-
ing to linear accelerations, modulating the firing rate of

sensory afferent neurons that transmit information to
vestibular nuclei and to the cerebellum. Furthermore, this
sensory system is actively modulated by efferent projections
on the hair cells or on their afferent synapses.

The population of hair cells is not homogeneous: in par-
ticular larger and more isolated cells are distributed along
a narrow central zone, named the striola (Fernandez et al.
1990; Desai et al. 2005; Li et al. 2008). Most of the striolar
hair cells have specific immunohistochemical properties, in
particular they express Calmodulin, Calbindin, Calretinin,
Parvalbumin (Oncomudulin) (Leonard 2002; Desai et al.
2005; Simmons et al. 2010). From these properties we see
that in mammals hair cell bundles reverse their polarity on a
line parallel to the striola, named the polarity reversion line
(PRL). The striola has a characteristic shape: on the utri-
cle, it has a C shape similar to a circular or parabolic arc,
depending on the species, whereas on the saccule it has an
S shape that justifies the frequent comparison with a hook
(see Fig. 1).

In addition, it has been observed since long time that the
macular surfaces are far from being flat. The surface of the
saccule is described as an ellipsoidal lens with its convexity
laterally oriented, whereas the surface of the utricle looks
like the upside palm of an hand (see Takagi and Sando 1988;
Sato et al. 1992; Naganuma et al. 2001, 2003; Tribukait
and Rosenhall 2001; Tribukait et al. 2005 for humans and
Curthoys et al. 1999 for guinea pig). The curvature of the
maculae in the three dimensional space is suspected to be
useful for detecting a wide range of linear accelerations

Fig. 1 Adapted from Spoedlin
(1966). Macula of the left
utricule (a) and of the right
saccule (b) with their
morphological polarization
vectors. The insets illustrate the
orientation of the respective
coordinate system: x/y/z
indicates front/left/up,
respectively. The striola is
parallel to the PRL where the
morphological polarization
vectors invert their polarity.
Therefore, all morphological
polarization vectors along the
striola have the same
orientation: they are oriented
along the positive Y -axis for the
utricule and along the positive
Z-axis for the saccule
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(Jaeger 2002; Naganuma et al. 2003). The idea that the
geometry of the epithelium, of the hair bundles and the
synaptic arrangement with afferent cells, allied to physiol-
ogy and dynamics, is essential for information processing
in the vestibular maculae was developed in particular by
Tomko et al. (1981) and Ross et al. (1988, 1990).

Most of the hair cells near the striola are encapsuled
in calyces by their sensory afferents, they possess specific
ionic channels (in particular a delayed rectifier gKL, acti-
vated at resting potential) that make them non-linear and
difficult to activate. These hair cells are said of type I. Their
afferents are phasic, adapting and irregular (i.e. they have a
large coefficient of variation of interspike time, 30 %). On
the contrary, in extrastriolar regions, most hair cells are of
type II: they are linear and easily activated, with afferents
that are tonic, less adapting and more regular (mean coeffi-
cient of variation 3 %) (see Fig. 2). Complex calyx endings
are more numerous on the striola (Desai et al. 2005).

However, type I and type II hair cells are found every-
where on the macula, in different proportion, depending
on the species (Desai et al. 2005), and there is no strict
correspondence between type I and striola or type II and
periphery. In fact the physiology of both types of hair cells
depends on the region where they are located, as explained

Fig. 2 Reprinted from Spoedlin (1966). Vestibular sensory epithe-
lium and its innervation: HCI and HCII correspond to the hair cells of
type I and type II respectively; St and KC indicate the stereocilia and
kinocilia respectively; NC refers to the calyces

in Goldberg (2000) and Eatock and Songer (2011).
Goldberg et al. (1990), have shown that the striolar afferent
system is more sensitive and phase advanced, i.e. it detects
a signal between the linear jerk and the linear acceleration.
They observed that even type II hair cells on the striola have
a similar bias. Also the morphology of hair bundles of all
the types vary from the striola to the periphery (Rowe and
Peterson 2006; Spoon et al. 2011). According to one of the
first observers, H.H. Lindeman (1969, 1973): The regional
differences in the structure of the maculae suggest that the
striola differs functionally from the peripheral areas. But
this function is still largely mysterious.

Our aim is to present a functional model of the striola that
supports the conjecture of Lindeman (1973), in the light of
many experimental and theoretical studies (Fernandez and
Goldberg 1976a, b; Goldberg et al. 1990; Ross 2001; Desai
et al. 2005; Rowe and Peterson 2006; Jaeger et al. 2008;
Eatock and Songer 2011).

Our first hypothesis is that striolar type I hair cells
provide a non-linear tuning of acceleration vectors with
maximal response when they are perpendicular to the striola
curve at their place. Our second hypothesis is that the stri-
olar afferents contacting these hair cells react non-linearly
to the information given by the intersection of the recep-
tive fields of the hair cells they contact. These afferents
can be modulated by striolar type II hair cells, that provide
complementary information about the planes containing a
given acceleration vector. We neglect this modulation in our
computational study.

Moreover, to select the set of pairs of hair cells on the
striola which are contacted by afferent neurons, we make
the hypothesis that, at the level of population, the afferent
neurons should represent an uniform map for the possible
variations of acceleration directions. Henceforth we refer to
as variation of a direction, any vector perpendicular to this
direction. This corresponds to a vector tangent to the sphere
representing all the directions in the space.

The first prediction of our model is that the striola must
be centered on a curve which has curvature and torsion. A
second prediction is that the domain of acceleration direc-
tions detected by the striolar system for the phasic pathway,
and the jerk information, has the same size as the domain
detected by the extrastriolar region for the tonic pathway
and the acceleration information.

Thus, we suggest that functionally the striola plays the
role of a virtual macula, additional to the real macula (see
Mathematical appendix for the precise definition of this
functional surface).

This work has potential applications in motor control
and in medicine, since it describes a part of the subsys-
tem of the vestibular system that is probably responsible
of the highest order anticipation, and that is also the most
fragile during advanced age and under antibiotic treatment
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(Lindeman 1969; Lyford-Pike et al. 2007). Also specific
regeneration of hair cells occurs in the striolar and juxtastri-
olar regions of the utricle (Lin et al. 2011).

The structure of the paper is as follows. Section 2 pro-
vides a presentation of the mathematical model and gives
the equations for the receptive fields model of the hair cells
and the afferents. Section 3 provides a detailed descrip-
tion of the simulations performed to validate the proposed
model. In particular, it explains how to select a subpop-
ulation for optimal detection of acceleration changes, it
shows the statistical characteristics of this population, and
it describes the learning algorithm for decoding. Finally,
Section 3 provides our interpretations of the present work,
in relation to phylogenetic data as well as to its biolog-
ical relevance in view of previous work. Mathematical
appendix introduces to the differential geometry underlying
the model.

2 Method

2.1 A functional model of the striola

On the striola, the morphological polarization vectors of the
hair bundles vary continuously: in particular they are not
disposed head to tail as they are on the PRL. This is true for
mammals, as shown by Desai et al. (2005), and Tribukait
et al. (2005), and for birds (Si et al. 2003; Zakir et al. 2003).
Thus, we assume that the polarization of hair cells is well
defined and continuous on the striola curve.

On the utricle, the PRL has no intersection with the stri-
ola (Eatock and Songer 2011), with depolarization of the
hair cells induced by laterally oriented acceleration vec-
tors. On the saccule, recent observations of Songer on rats
(Eatock and Songer 2011), indicate the existence of two stri-
olae with opposite polarization. However, we will present
the results for only one striola on the saccule, with depolar-
ization induced by acceleration vectors directed to the top
of the head, which corresponds to a striola located above
the PRL.

A priori the arrangement on a narrow band should
restrain the detected acceleration directions to a nar-
row domain. However the detected domain can be
enlarged if several hair cells on the striola can join their
information.

It is an experimental observation that many striolar affer-
ent dendrites envelop several hair cells in their calyces. One
possibility for joining information is that each afferent cell
signals a certain linear combination of different projections
of the acceleration vector, thus proceeding by averaging
(or by addition). A second possibility is that each afferent
estimates an acceleration by intersecting several sectors sig-
naled by its input hair cells, thus proceeding by exclusion (or

by product). A more general solution is to use a combina-
tion of both models, using complex afferent microcircuits,
as observed by Ross et al. (1997, 2003), but in the present
study we consider only not hybrid models.

Both not hybrid fusion models enlarge the detected
domain of acceleration directions. By geometrical analysis
and numerical simulations we observed that the multiplica-
tion model gives a much larger detected domain than the
addition model. (see Section 3)

Thus we suggest that a typical afferent compute the inter-
section of the domains of the hair cells it contacts. Let us
explain with elementary formulas the consequence of this
rule for the striolar function. We suppose that the striola is a
band centered on a twisted curve C, described in a cartesian
coordinates system fixed to the head by the parameterization

x = f (u), y = g(u), z = h(u), (1)

where u is a real parameter, f, g, h are real smooth func-
tions, x goes in front, y laterally and z upside. If the
acceleration vector of the head, denoted by A, has coordi-
nates a, b, c, the scalar product with the tangent T of C in a
point C(u) is given by

A.T = f ′(u)a + g′(u)b + h′(u)c. (2)

(where a prime denotes a derivative with respect to u).
The maximum activation of one hair cell is attained only
when u makes the scalar product A.T equal to zero, which
corresponds to:

f ′(u)a + g′(u)b + h′(u)c = 0, (3)

with additional inequalities telling that the vector (a, b, c)

has a positive scalar product with the polarized normal of
the striola curve in the macula surface. An afferent cell con-
tacts two hair cells, located at two different values of the
parameter u, say u1, u2, consequently, the preferred acceler-
ation direction of the afferent cell is (a, b, c) if and only if
u1, u2 are the solutions of the above Eq. (3).

Since the space of directions has two independent dimen-
sions, the best curves to represent in the two dimensional
space the set of directions are the curves that give a pair
of solutions (u1, u2) of Eq. (3) for each unit vector A
belonging to the largest possible solid angle.

It is easy to demonstrate (see Mathematical appendix)
that the curve C has to be curved and twisted for that.
The simplest example, that also gives a local approxima-
tion of all curved and twisted curves, is given by the normal
rational curve, also named twisted cubic

x = αu y = β

2
u2, z = γ

3
u3. (4)

where u is a real parameter. The corresponding parametriza-
tion of direction is given by solving the binomial equation:

γ cu2 + βbu + αa = 0, (5)
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In this case, we get two solutions u1, u2 when the discrimi-
nant is strictly positive, that is

β2b2 − 4αγ ac > 0. (6)

Thus the method works well for the directions lying outside
a convex cone of revolution.

2.2 Model equations of the striola

We model the striola of the otolith organs by a parameter-
ized curve C: u �→ (f (u), g(u), h(u)), where the parameter
u belongs to a closed interval [umin, umax] on the real line,
and its image belongs to the three-dimensional space with
cartesian coordinates fixed to the head. The X-axis points
out of the nose, the Y-axis out the left ear and the Z-axis to
the top of the head (see Fig. 1).

We assume that the surface representing the macula
where the striola lies on is spherical. In fact, consid-
ering the extrastriolar system, which detects more static
accelerations, the principle of uniform detection predicts a
macula surface with the largest possible number of sym-
metries induced by isometries of the three dimensional
space.

Since the maximum number of dimensions for a group
of symmetries preserving a surface in a three-dimensional
space is 3, this corresponds to a piece of sphere or a plane.
Since a plane cannot contain a twisted curve, we have taken
a spherical lens for the macula. It is worth to remark that
the properties described above agrees with many anatomical
observations made on vertebrates (Lindeman 1973; Desai
et al. 2005; Tribukait et al. 2005; Si et al. 2003; Zakir et al.
2003).

Taking into account the reported shape of the striola
in humans (Tribukait and Rosenhall 2001; Tribukait et al.
2005), our model for C was the intersection of a spheri-
cal lens with a cylinder on a cubic graph for the saccule,
and the intersection of a spherical lens with a cylinder on a
circular arc for the utricle. The spheres and cylinders orien-
tations in our simulations correspond to the axis computed
by Naganuma et al. (2001, 2003). (see Fig. 1).

Let S2 be the two-dimensional sphere of radius R cen-
tered at the origin of the frame OXYZ.

In the case of the utricle, the curve representing the striola
and lying on S2 is given by the parametric equations:

f (u) = u, g(u) =
√

r2 − (u − xc)2 + yc, h(u)

=
√

R2 − u2 − g(u)2, (7)

where g(u) represents an arc of circle of center (xc, yc, 0)

and radius r.

In the case of the saccule, the curve representing the stri-
ola and lying on S2 is given by the parametric equations:

f (u) = u, g(u) = −
√

R2 − u2 − h(u)2, h(u) = cu3 + εu,

(8)

where h(u) is a cubic polynomial.
The equation for the utricular striola reproduces the

known convex shape in the horizontal plane and its known
anterior upward inflexion. The cubic equation for the saccu-
lar striola corresponds to the known inflexion in the sagittal
plane and to its medial curvature. The parameters of these
curves have been chosen to be similar to available exper-
imental data about the shape of the left utricular (Takagi
and Sando 1988; Tribukait and Rosenhall 2001) and saccu-
lar striola (Takagi and Sando 1988; Naganuma et al. 2003;
Tribukait et al. 2005) of humans. For the left utricle we
have taken: (xc, yc, 0) = (4, 0, 0), r = 5, R = 8 and
u ∈ [−1.0, 6.8]. In addition the curve has been rotated
of −0.3 radians (−17.19°) with respect the X-axis, of
−0.4 radians (−22.92°) with respect the Y -axis and of −0.5
radians (−28.65°) with respect the Z-axis (see Fig. 3). For
the left saccule we have taken: c = 0.014, ε = 0.01, R = 10
and u ∈ [−5, 5]. In addition the curve has been rotated of
−0.53 radians (−30.37°) with respect the X-axis and of π

radians (180°) with respect the Y -axis.
In Figs. 3 and 4 are shown respectively the morphologi-

cal polarization vectors associated to the striola of the utricle
and of the saccule on the left side of the head. They cor-
respond to the arrows in Fig. 1, where a three-dimensional
view of the macular surfaces of the left utricle (a) and
saccule (b) are shown together with their morphological
polarization vectors. All morphological polarization vectors
on the striola are oriented along the positive Y -axis for the
utricle and along the positive Z-axis for the saccule.

The location of hair cells along the striola is computed by
taking the arc length l(u) of the curve C,

s = l(u) =
∫ u

0
‖ C′(v) ‖ dv, (9)

where C′ is the velocity vector of the curve C. By using s as
new parameter, the curve C can be written as:

C : s �→ (F (s), G(s), H(s)), (10)

where s varies in [smin, smax] ⊂ R and where F(s) =
f (l−1(s)), G(s) = g(l−1(s)) and H(s) = h(l−1(s)).
In the following we consider that several hair cells can have
the same parameter s, thus we model a narrow band of cells
and not only a one-dimensional array of cells, but we neglect
the effects of the width of the band.

The discretized version of the curve C consists of a finite
set of equidistant points C = {C(0), C( L

N
), ..., C(

L(N−1)
N

)},
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Fig. 3 From left to right are shown the horizontal, sagittal, frontal and three dimensional views of the vectors representing the direction of the
kinocilium of the hair cells along the modeled striola of the left utricule

where N = 50 is the number of modeled hair cells and L is
the length of the curve C. In the following we denote by si
the parameter (i − 1) L

N
for i = 1, ..., N .

The curve C is equipped with a vector field N(s) nor-
mal to the tangent T(s) of C and tangent to S2. If we
denote by R(s) the vector normal to S2, the vector field
N(s) is obtained as the normalized vector product: N(s) =

T(s)×R(s)
‖T(s)×R(s)‖ . The sign of N depends on the signs chosen
for T and R and on the orientation OXYZ. We adapted
these choices in such a manner that the vector field N(s)

represents the morphological polarization vectors along the
striola.

2.3 Response of single hair cells

We assume that the type I hair cells along the striola have
non-linear receptive fields, which make them more sensi-
tive to acceleration vectors orthogonal to the striola than a
cosine tuning would predict. This is compatible with the

simulation results of Nam et al. (2007a, b), that we will
consider in Section 4.

Denoting by A the linear acceleration of the head, we call
αi = α(si) the angle between A and the vector Ti tangent to
the curve C at the point si , and βi = β(si) the angle between
A and the vector Ni normal to the curve C and tangent to the
surface of the sphere at the point si ∈ C.

The response of a single hair cell of parameter si to
the acceleration stimulus A is given by the product of two
functions:

R(si, A) = f1(αi)f2(βi). (11)

The function f1 expresses the dependency of the instanta-
neous response of a single hair cell at C(si) with respect to
the angle αi . We choose f1(αi) as follows

f1(αi) = sin8(αi). (12)

This function (see Fig. 5a) is defined in [−π, π ] and
assumes maximum value when αi = π

2 and αi = −π
2 .

Fig. 4 From left to right are shown the horizontal, sagittal, frontal and three dimensional views of the vectors representing the direction of the
kinocilium of the hair cells along the modeled striola of the left saccule
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a b

Fig. 5 a Tuning function f1(α) which models the response of a single
hair cell si to an acceleration stimulus, whose direction forms an angle
α with with the vector tangent to the striola at si . b Tuning function

f2(β) which models the response of a single hair cell si to an accelera-
tion stimulus, whose direction forms an angle β with the vector normal
to striola and tangent to the surface of the macula at si

This means that f1(αi) is maximum when the acceleration
vector lies on the plane normal to the tangent to the striola
at C(si). The exponent 8 was chosen to introduce a strong
non-linearity in the transversal tuning of the hair cell. The
modeling study of Nam et al. (2007b) reported a non-linear
behavior of this kind, with a flat minimum of the response
for right angle stimulations. However, our equation does not
model the reported symmetric plateau around the angle of
maximum response.

The function f2 expresses the dependency of the instan-
taneous response of a single hair cell of parameter si with
respect to the angle βi . We choose f2(βi) as follows

f2(βi) = 1

2
cos(βi)

(
1 + erf

(
3

(π

2
− 0.4 − βi

)))
, (13)

where erf is the error function

erf (z) = 2√
π

∫ z

0
e−t2

dt. (14)

This function (see Fig. 5b) is defined in [0, π
2 ] and assumes

maximum value when βi = 0. Therefore, the response
is maximum when the acceleration vector has the same
orientation of the morphological polarization vector Ni . It
represents the standard cosine tuning in the polarization
direction.

Therefore, in the plane normal to the striola, the response
R(si, A) is maximum when the acceleration vector A is
oriented to the kinocilium.

The proposed activation function does not take into
account the intensity of the acceleration A: a complete

model should introduce a sigmoid function σ with a thresh-
old, for measuring the dependency in the norm a = ‖A‖,
giving:

R̃(si , A) = σ(af1(αi)f2(βi)). (15)

However, in the present study this dependency on the norm
and the static non-linearity have little importance, being the
acceleration direction the crucial element in the analysis.

2.4 Response of calyces afferents

2.4.1 Single afferent response

We assume that the striolar afferent neurons integrate non-
linearly the activities of two hair cells on average.

The majority of the hair cells in the striolar region of the
macula have the particularity of being totally surrounded by
a nerve calyx. In our simplified model each afferent neuron
takes information from two calyces. We argue that striolar
afferents proceed by estimating the acceleration directions
as intersection of dihedral sectors, being each sector associ-
ated to one of the hair cell captured by a calyx ending of this
afferent. Figure 6 shows how the theoretic preferred direc-
tion of the afferent aij capturing two hair cells of parameters
si and sj is computed geometrically. To each parameter si
is associated a plane determined by its polarization vector
Ni and the vector Ri normal to the surface of the macula at
C(si). The preferred direction of the afferent aij is given by
the direction of intersection of the planes associated to each
hair cell it captures.
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A

HC

HC

s

AC

Fig. 6 An afferent cell (AC) encapsulates in calyces two hair cells
(HC) on the striola (s). The preferred direction A of the AC is given by
the intersection of the planes associated to each hair cell, being each
plane determined by the polarization vector of the hair cell and by the
vector normal to the surface of the macula at the point representing the
hair cell

For each possible afferent cell aij , the theoretic preferred
direction Aij = (θij , φij ) is given by the vector product

Ti×Tj

‖Ti×Tj ‖ .
The response to a given acceleration stimulus A of a sin-

gle afferent aij which takes information from the hair cells
in C(si) and C(sj ) is modeled as the product of the responses
of the two hair cells:

R(aij , A) = R(si , A)R(sj , A) = f1(αi)f2(βi)f1(αj )f2(βj ) (16)

Therefore, the response of a single afferent is given by the
intersection of the set of directions that cause an important
excitation of each hair cells.

The dynamic response of the afferent aij to the accel-
eration stimulus A would be described by the following
equation:

R(aij , A)(t) =
∫

f1(αi(t
′))f2(βi(t

′))f1(αj (t
′))

×f2(βj (t
′))δ′

ε(t − t ′)dt ′,
(17)

where δ′
ε(t − t ′) = d

dt

(
1√
2ε

e− |t−t ′ |2
2ε

)
, with ε > 0 is a

time wavelet approximating the derivative of the Dirac func-
tion. This formula would make the afferent cell able to

detect changes of acceleration directions. However, in the
following we will only consider the region of acceleration
directions and the variations of these directions seen by the
afferent cell without testing the response to dynamic stim-
uli. Roughly speaking, the afferent cell would compute the
discrete derivative A(t+δt)−A(t)

δt
whereas we consider only

the response to A(t) and A(t + δt) separately and we check
if the difference between the two responses is large (see
Section 3.2.3).

In Section 4 we present justifications for this kernel,
from the known physiology of striolar afferent neurons
(Eatock and Songer 2011), and from analogy with the global
response of semi-circular canals afferent neurons (Highstein
et al. 2005).

2.4.2 Selection of the population of afferent neurons

From the above striola model equations, we have deter-
mined a population of afferents able to detect accurately the
variations of linear acceleration. The details of the popu-
lation selection are given in the Section 3, but we expose
now the principle underlying our method. We started with
all possible pairs of hair cells along the striola: this gave
a population of afferent P . Then we computed the domain
� of acceleration direction which are detected above a
threshold (half of the maximum response), and we selected
a sub-population Presp of P , detecting acceleration in �

above the same threshold. To proceed further we considered
the variations of responses when the acceleration stimuli
vary, for sensing the linear jerk. We selected a new domain
�′ of acceleration vectors Ak such that the gradient of
some afferent response was sufficiently high in one of six
directions Vd

k orthogonal to Ak . Then we defined the sub-
population Pgrad of Presp which can detect accurately the
variations of acceleration vectors in sufficiently many direc-
tions. We limited the population Pgrad by a uniformity
condition, requiring that the number of afferents sensing a
given variation (Ak, Vd

k ) do not departs too far from the
mean number.

2.5 Decoding

Based on the response of a population of afferent cells to
a given acceleration direction A, the brain should be able
to extract an estimate Â of the underlying encoded original
stimulus A. To verify that the information encoded by our
model can be appropriately decoded by the brain, we have
used a supervised learning method.

A simple decoding method without learning such as pop-
ulation vector decoding proposed by Georgopoulos et al.
(1986) would be inappropriate in our case, because this
decoding method works well when the patterns of activity
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as a function of the stimulus behaves like gaussian func-
tions. But in our model the patterns of activity as a function
of the stimulus parameter do not follow gaussian-like laws
(see Section 3.2).

A learning algorithm was therefore necessary to discover
a regular mapping between the population responses and the
underlying stimulus. We have used a supervised learning
algorithm, the classical backpropagation algorithm with a 2-
layer perceptron (Rumelhart et al. 1986), in order to map the
simulated afferent inputs to the direction outputs. Because
this algorithm does not use local learning rules, its biolog-
ical plausibility remains uncertain, and in fact it has been
used here as a simple way to assess the decodability, not as
a model of any brain operation.

3 Results

3.1 The shape of the striola and the number of calyces

First, our model provides an explanation of the observed
shape of the striola, namely a 3D curve with curvature and
torsion. This is discussed in details in the Mathematical
appendix, but we can explain this result without using math-
ematical symbols. Suppose that an afferent fiber branches
and contacts two hair cells along the striola curve S. This
will allow an improvement of the information from these
two cells as soon as the sectors seen by the hair cells
intersect transversally. This implies a large curvature of S.
Moreover, in order to get a large solid angle for the possi-
ble directions of intersection, the sectors seen by the hair
cells have to twist in space, implying a large torsion of S.
Due to the known global orientation in space of the macu-
lae (Curthoys et al. 1995; Takagi and Sando 1988; Tribukait
and Rosenhall 2001; Naganuma et al. 2003; Tribukait et al.
2005), we obtain a S curve for saccule which has a similar
horizontal projection in space than the S curve of the utricle
of the opposite hemisphere of the brain. Thus, on each side
of the brain we have two twisted space curves, and by the
union of all these four curves we obtain a curve on a sphere
that resembles the division on a tennis ball (or suture of base
ball) (see Fig. 7).

A main point in our model is that the striola afferent
system forms a map of directions in space by coupling
several points along the striola curve. This correspond to
the mathematical concept of divisor of a curve, due to Abel
and Riemann (see the book of Griffith and Harris (1978)).
Since directions in the three dimensional space depend on
two parameters and points on a curve depend upon only
one real parameter, in average we must take into account
two points on the curve for each direction in 3D space.
This agrees with experimental observations: the results of
Goldberg et al. (1990) give 2.26 as a mean number of

x

−y

z

Fig. 7 The red and the yellow curves represent respectively the striola
of the right and of the left utricule. The green and the blue curves
represent respectively the striola of left and of the right saccule

calyces by afferent in the utricle of the chinchilla, and the
results of Desai et al. (2005) give 1.84. These last authors
also computed the mean number of calyx terminations of
afferents for the saccule and utricle of six species of rodents
(mouse, rat, gerbil, guinea pig, chinchilla and tree squir-
rel): except for mouse and gerbil (around 1.55 and 1.65
respectively) they found indexes larger than 1.75. Thus our
model gives an explanation of the observed mean number of
calyces for striolar afferent fiber.

As a consequence we conclude that the striolar system
can detect three dimensional acceleration directions and
their change in time (jerk) without the need of computing
the intensity of the sensed accelerations.

More refined theoretical results (see Mathematical
appendix) allow an improvement of the optimal curve for
the striola:

1) If a curve S allows a smooth parametrization in an open
solid angle by pairs of points in the vicinity of a point
P0, then there exists an Euclidian affine change of coor-
dinates in the three dimensional space such that S has a
contact of order 4 with a twisted cubic.

2) Let us choose as coordinates for the pairs of points
on the curve S the elementary symmetric functions of
the curvilinear abscissas, and as measure on the set
of directions the Euclidian solid angle. Denoting by ϕ

the transformation sending the pairs of points in S to
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the corresponding directions in the three dimensional
space, then, at the second order of approximation in
the distance of the points, the jacobian determinant of
ϕ is equal to −κτ 2/4, where κ, τ denote respectively
the curvature and torsion of the curve. Thus, for curves
S in the three dimensional Euclidian space, to obtain
the largest uniformity of representation for information
maximization, the curve S must have a curvature and a
torsion such that the function τ

√
κ is constant;

3) For curves on a sphere, the optimal curves are the
unique spherical curves with given constant product
τ
√

κ . They are associated to lemniscatic elliptic func-
tions (Greenhill 1892).

However, our model does not implement the theoreti-
cally optimal striola, but a standard spherical curve with
parameters deduced from empirical data.

3.2 The receptive domains

3.2.1 Multiplication versus addition

Numerical simulations allowed to compare different rules of
cooperation between hair cells. We compared the averaging
rule with the intersection rule and we found that the second
gives a much larger detected domain than the first, as can be
seen on the Fig. 8.

In Fig. 9 is shown an example of receptive field (response
in function of acceleration direction) of an afferent captur-
ing two hair cells. On the first row of Fig. 9, corresponding
to the utricle, are represented the responses of two different
hair cells (a and b) and responses of the afferent capturing
these two hair cells (Fig. 9c). The same representation holds
for the second row, which corresponds to the saccule.

3.2.2 Responding afferent population

Another result, obtained through numerical simulations, is
the domain of acceleration directions sensed by the strio-
lar system. This has been achieved by assuming the simple
forms of maculae and striolae discussed above and by
selecting sub-populations of afferent neurons in order to
have an uniform detection of the variations of acceleration
directions (see Fig. 11).

Let S2
A be the sphere of radius 1 representing all possi-

ble acceleration directions. In Fig. 10, we have associated to
each Ak ∈ S2

A the maximum value of the response obtained
among all possible afferents. As expected considering the
orientation of the morphological polarization vectors along
the striola (see Fig. 1), we have found functional polariza-
tion vectors only on the upper hemisphere for the saccule
and only on the left part of both upper and low hemisphere
for the utricle (see Fig. 11).

We denote by � the region of S2
A for which the global

response is above a fixed threshold λR:

� = {Ak ∈ S2
A | ∃aij : R(aij , Ak) > λR}. (18)

We simply took for λR the half of the maximum absolute
value of the response obtained among all possible afferents
for all possible acceleration directions. We denoted by Presp

the set of afferents that respond to at least one acceleration
in � with an activity above λR .

Presp = {aij , i 
= j, | ∃Ak ∈ � : R(aij , Ak) > λR} (19)

This had the effect of reducing the dispersion of responses
without reducing too much the size of the population.

3.2.3 Uniform capture of linear jerk

The acceleration vectors in � are sensed with an intensity
range that goes from λR to the maximum absolute value.
As it can be observed in Fig. 11a and b, the capture is quite
uniform in this region. However, since our hypothesis is that
the afferents along the striola are best suited to capture the
variations of acceleration directions (to sense the jerk), what
really matters is that the capture be uniform with respect to
a variation of the acceleration directions represented in �.
Let us describe how we have selected a subset of � and a
sub-population of Presp to this goal:
First we computed how well a given afferent aij in Presp is
able to detect the variation of a given acceleration direction
Ak in a given orthogonal direction Vk .

For each acceleration Ak ∈ �, we have considered a
set of six gradient reference directions Vd

Ak
, d ∈ {1, .., 6},

randomly chosen and forming a regular hexagon. Note that
for each acceleration Ak the set of Vd

Ak
lies on the plane

perpendicular to Ak . We associated to each acceleration
Ak ∈ � and to each afferent aij ∈ Presp the unitary vector

gradient
∇Ak

R(aij ,A)

‖∇Ak
R(aij ,A)‖ , where ‖∇AR(aij , Ak)‖ is the norm

of the gradient of R(aij , Ak) with respect to the acceleration
direction Ak .

‖∇AR(aij , Ak(θ, φ))‖

=
√(

∂R(aij , A(θ, φ))

∂θ

)2

+
(

∂R(aij , A(θ, φ))

∂φ

)2 1

cos2(θ)
,

(20)

where we take the discretization:

∂R(aij , A(θ, φ))

∂θ
= R(aij , Akθ (θ + δθ , φ)) − R(aij , Ak(θ, φ))

δθ

(21)
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Fig. 8 In this image are shown
the stereographic projections of
the unit sphere, with the upper
hemisphere in the upper row and
the lower hemisphere in the
lower row. The left column
represents the domain of
acceleration directions
computed by all possible pairs
of hair cells by intersection of
dihedral planes for the utricle
(a) and the saccule (c)
respectively. The right column
represents the domain which
would have been detected by
taking the vector sum of hair
cells activity by pairs (b) and
(d) for the utricle (b) and the
saccule (d) respectively. The
apparent checkerboard pattern
is due to the discretization of the
population. The inset shows how
the north (south) hemisphere is
represented with a stereographic
projection from the south
(north) pole on the plane tangent
to the north (south) pole

a b

c d
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a b c

d e f

Fig. 9 On the sphere of all acceleration directions, (a) and (d) rep-
resent the receptive field of a single hair cell si for the utricle and
the saccule respectively; in the same manner (b) and (e) represent the

receptive field of another single hair cell sj for the utricle and the sac-
cule respectively, then (c) and (f) represent the receptive field of the
afferent aij capturing the hair cells si and sj
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Fig. 10 a, b for the utricle and
(e), (f) for the saccule represent
the activity of all possible
afferents in response to the
acceleration stimulus
represented respectively in (c),
(d) and (g), (h). In (a), (b), (e),
and (f) the abscissa and the
ordinate represent the 50 cells
modeled on the striola and the
color code the activity of the
target afferent cell getting input
from the respective pair
of hair cells

ba

dc

fe

hg
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Fig. 11 Maximum value of the
response over all possible
afferents, normalized with
respect to the maximum
absolute value, represented on
the sphere of all acceleration
directions, in stereographic
projections, for the utricule on
the left column and for the
saccule on the right column

and

∂R(aij , A(θ, φ))

∂φ
= R(aij , Akφ (θ, φ + δφ)) − R(aij , Ak(θ, φ))

δφ

(22)

We defined ν as the maximum among all possible afferents
in Presp of the minimum value of the gradient with respect
to an acceleration variation among all accelerations in �:

ν = max
aij ∈Presp

min
Ak∈�

‖∇AR(aij , Ak)‖ (23)

For each gradient response ∇Ak
(R(aij , Ak)) whose norm

is above ν, we measured its proximity to the gradient
reference direction Vd

Ak
by computing the angle ω =

arccos
(
∇Ak

(
R(aij , Ak)) · VAk

)d
)

.

We determined that a variation of Ak in the direction
Vd

Ak
is well detected by aij if ∇Ak

(R(aij , Ak)) ≥ ν and
ω < π

6 . These criteria were retained to insure a suffi-
ciently dense detection of the variations of acceleration
directions.

The acceleration vectors appearing for at least one pair
aij , V form a solid angle �′ inside �, and the afferent
appearing for at least one pair A, V form a subset P ′ of
Presp.

If the gradient direction Vd
Ak

is well detected by an

afferent cell the gradient direction Vd+3
Ak

will also be well
detected, because its scalar product with the gradient has the
same absolute value and the opposite sign. Therefore the six
gradient directions correspond to three independent gradient
orientations. The choice of considering only three indepen-
dent gradient orientation instead of four or more is due to
the limited number of hair cells (50), and therefore possible
calyx afferents, modeled in the simulations. Nevertheless,
we have verified that even when considering six gradient
orientations instead of just three (that is twelve directions),
the afferent cells are well distributed along all these six
orientations.

For each afferent aij we computed the number Nij of
times that aij appears as good detector of a variation of
acceleration in �′. We defined a threshold λN as half of
the maximum of the numbers Nij over all pairs i, j . The
role of this threshold is to prepare a population of affer-
ents with uniform ability to detect the linear jerk. Then,



J Comput Neurosci (2013) 35:125–154 139

for each Ak ∈ �′ we defined the set P ′
Ak

such that there

exists a Vd
k which is well detected by aij ∈ P ′ and that the

corresponding Nij is larger than λN . And we defined Pgrad

as the union of the sets P ′
Ak

over Ak ∈ �.
The final step consists in verifying that all the subsets

P ′
Ak

contain almost the same number of elements in Pgrad .
This corresponds to our uniformity condition.

More precisely, we consider the set of elementary events
given by the pairs (Ak, Vd

k ) where Ak belongs to �′ and d
varies from 1 to 6, and we define the random variable N as
the number NAk,Vd

k
of afferents aij in Pgrad that are good

detectors of the pair (Ak, Vd
k ). Then we define μAk

as the
mean over the variations,

μAk
= 1

6

6∑

c=1

NAk,Vd
k
; (24)

the mean μ of N is given by

μ = 1

M

M∑

k=1

μAk
(25)

and the standard deviation σ of N is given by

σ =
√√√√ 1

M

M∑

k=1

(μAk
− μ)2 (26)

The inequality of Cantelli (also known as the one-sided
inequality of Chebyshev), guarantees that in almost every
data sample, no more than 1

1+r2 of the data values can be
more than r standard deviations away from the mean. In
formulas, if μ is the expected value of the random variable
N and if σ 2 denotes its variance, than for any real number
r > 0, the inequality of Cantelli is

Pr(μ − N ≥ rσ ) ≤ 1

1 + r2
. (27)

We found that, for the population Pgrad , the numbers
NAk,Vd

k
satisfy the inequality μ − NAk,Vd

k
≥ rσ for a value

of r equals to r = 3 in the case of the utricle and equals to
r = 1 in the case of the saccule. We computed μ− rσ = 38
for r = 3 for the utricle and μ − rσ = 23 for r = 1 for the
saccule.

Table 1 shows the statistics of N computed on the popu-
lation Pgrad for the utricle and for the saccule.

3.3 Decoding by learning

We considered a neural network to which are provided Ns

training examples. Each training examples is a pair (pk, tk),
where pk is a pattern vector of activities and tk is the cor-
responding target vector with k ∈ [1, Ns]. Let np be the
number of elements of each pattern vector and nt be the
number of elements of each target vector. In our model
np corresponds to the cardinality of the set Pgrad , that is
np = 770 for the utricle and np = 563 for the saccule, and
nt corresponds to the components of the acceleration vector,
that is 2 in a spherical coordinate system. Each element pk

m

of an input vector corresponds to the response of the neuron
m to the corresponding target vector tk: pk

m = R(am, tk) =
R(am, Ak). Therefore each training example is a pair hav-
ing the form: ([R(a1, Ak), ..., R(anp , Ak)], [θk, φk]), where

(θk, φk) are the components of Ak . Let w
np×nh

1 be the matrix
of synaptic weights between the neurons of the input layer
and the neurons of the hidden layer and wnh×nt

2 be the matrix
of synaptic weights between the neurons of the hidden layer
and the neurons of the output layer.

We stopped the learning algorithm when the average
quadratic error between inputs and outputs attained a fixed
threshold ε = 10−5. Once obtained the matrices of learnt
weights w1 and w2, an estimate Â of the stimulus A can be
obtained by using the following formula:

Â =
nt∑

l=1

�

(
nh∑

n=1

w2[n][l]�
( np∑

m=1

w1[am][n]R(am, A)

))

,

(28)

where � denotes the arc-tangent function. We have tested
the goodness of the learnt weights over the entire set of
accelerations in �′ and we have evaluated the outcome by
calculating the angle between the vectors A and Â. We
found that the average error for a trial is less than 1°.

Table 1 Statistics computed
on the population Pgrad for the
utricule and for the saccule.
The superindex norm means
that the statistics have been
computed taking into account
the norm of the reference
vectors Vd

Ak
and the vector Ak

instead of their direction

UTRICULE
min μAk

58
max μAk

141
min σ2

Ak
0.000000

max σ2
Ak

0.333333

min μnorm
A k

356.256717
max μnorm

A k
1752.198653

min (σ2)norm
Ak

0.000001
max (σ2)norm

Ak
0.180787

μ 96.510689
σ 21.614370

SACCULE
min μA k

2
max μA k

82
min σ2

A k
0.000000

max σ2
A k

0.333333

min μnorm
A k

1010.276078
max μ norm

A k
2901.018712

min (σ2)norm
Ak

0.000002
max (σ2)norm

Ak
0.049325

μ 42.178899
σ 19.057136
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In the region where the slope of the arc-tangent function
can be approximated to 1, we can re-write Eq. (28) in linear
form as:

Â =
nt∑

l=1

nh∑

n=1

w2[n][l]
np∑

m=1

w1[am][n]R(am, A); (29)

and we can rewrite this equation as:

Â =
np∑

m=1

AmR(am, A), (30)

where Am = ∑nt

l=1

∑nh

n=1 w2[n][l]w1[am][n] represents a
new adapted preferred direction associated to the afferent
cell am.

3.4 Testing the robustness with respect to neuronal noise

To test the robustness of our model with respect to neuronal
noise, at each iteration of the BPNN algorithm, we have
sampled the value of the response R̃(am, Ak) of each affer-
ent am to the acceleration direction Ak from a gaussian noise
distribution with standard deviation σ = 0.1 and centered at
μ = R(am, Ak):

R̃(am, Ak) = 1√
2πσ 2

exp
(q − μ)2

2σ 2
, (31)

where q is a random value in the range [0, 1]. Experimental
simulation have proved that the network is able to learn the
right weight in presence of neuronal noise so that the error
is still of the order of 5°.

3.5 Comparison

In Fig. 12 (right) are shown the functional polarization vec-
tors measured experimentally by Fernandez and Goldberg
(1976a), as well as the distribution of morphological polar-
ization vectors of the hair cells computed by the model of
Jaeger et al. (2008) for the utricule (up) and for the saccule
(down). Before comparing them to the domain of acceler-
ation directions we obtained (see Fig. 12 (left)), we recall
that the experimentally recorded afferent vectors include all
type of afferents, calyces, dimorphic and boutons, that are
distributed along the overall macula. In addition, the simu-
lated density of morphological polarization vectors includes
type I and type II hair cells, distributed along the over-
all macula. On the contrary, the results shown in Fig. 12
(left) have been obtained by modeling only calyces strio-
lar afferents. In principle, our results, which relate directly
to afferents, should be compared with the data of Fernan-
dez and Goldberg, more than to the simulations of Jaeger
et al., which considered single hair cells responses, rather
than integrated afferent responses. We found a big similar-
ity between our computational results and the experimental

Fig. 12 In the left image, for the utricule as well as for the saccule,
is shown the maximum value of the response over all selected affer-
ents for each acceleration direction, normalized with respect to the
maximum absolute value. In the right image, for the utricule as well
as for the saccule, is shown the density of the morphological polar-
ization vectors along the macula modelized by Jaeger et al. (2008).
They increase from white over gray to black and were normalized with
respect to the largest density found on one of the epithelia. Superim-
posed on the projections, are also shown polarization vectors found
experimentally in single cell recordings from the vestibular nerve of
squirrel monkeys by Fernandez and Goldberg (1976a)

results of Fernandez and Goldberg, and a large overlap with
Jaeger et al. modeling results. The dissimilarities can eas-
ily be explained. As stated in Section 3.2.2, the fact that we
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have taken into account only the morphological polariza-
tion vectors along the striola (see Fig. 1) explains why we
find functional polarization vectors only on the upper hemi-
sphere for the saccule and only on the left part of both upper
and low hemisphere for the utricule. Taking in account the
observation of Songer (see Eatock and Songer 2011), we
would have to symmetrize the domain for the saccule with
respect to the center of the sphere.

The observed similarity is a non-trivial result, since
Fernandez and Goldberg registered afferents from all the
maculae surfaces. Thus this confirm our suggestion that
striolar and extrastriolar regions cover two similar head
acceleration domains, but at different orders of dynamics.

4 Discussion

In the present study we obtained an explanation of the three
dimensional shape of the striola on the otolith maculae
and we predicted the range of linear acceleration direc-
tions, including gravity, whose variation is well detected
by the striolar system. Our model was based on hypothe-
ses about the function of striolar type I hair cells, about
the way afferent cells collect information from them, and
about the function of the afferent population. However, this
theoretical study and its computational test were based on
several simplifications that we discuss in this section, in
the light of previous experimental data and computational
models.

The main line of thought we followed was that the
function of the striolar region is to give maximum possi-
ble information about the most dynamic movements of the
head, that is rapid, phasic and high frequency information.
By essence this information is three dimensional but it has
to come from specific morphology and physiology of cells
concentrated in a narrow region. Therefore cells from dis-
tinct places of the striola have to share their information.
The starting hypothesis was that striolar afferent neurons,
either dimorphic or calyces, choose their preferred accel-
eration direction according to the intersection of domains
chosen by their calyces. We suggested that one afferent
counts for two hair cells in the mean, and detects accelera-
tion by intersection of the preferred planes of the contacted
hair cells. This is a doubly non-linear process: type I hair
cells must have a non-linear tuning, not cosine but plateau,
and afferents must react to as a product, not as a sum or a
mean of hair cells. In this model, the effective dimension of
the whole striolar system is not one, as would predict a nar-
row band, but it is two, as if it were a supplementary macula
surface.

Then we can conjecture that sudden acceleration direc-
tion changes provoke a shape of activation along the striola
with several maximum points (in average two). This is

supported by the model of Jaeger and Haslwanter (2004):
“... peak responses occur simultaneously on different
locations of the striola.” We do not exclude the possibility
that different processings happen in the saccule and in the
utricle (Ross et al. 2000, 2001), but we suggest a common
geometric principle for acceleration and jerk detection in a
large domain.

In addition our model gives three testable predictions.
The first prediction deals with the biophysical properties of
the transduction. We predict that the reaction of the type I
hair cells in the striolar region is not well fitted by a cosine
tuning of the angle with the polarization vector. More pre-
cisely, we suggest that a stimulation exerted transversally
to the plane of symmetry of the hair bundle (i.e. the plane
which is generated by the polarization vector and the nor-
mal to the macula), generates a rapidly decreasing reaction,
giving zero at an angle less than 90°. On the contrary, a
stimulation exerted transversally to the macula generates a
cosine decreasing of the reaction of the hair cell.

The second prediction deals with the neural signals in the
vestibular nerve. We predict that the afferent neurons on the
striolar region react non linearly to the input of the type I
hair cells they contact. The exact form of the receptive field
would be given by a multiplicative formula of the reactions
of the hair cells it connects (as a probability of independent
events). This hypothesis could be tested by neurophysiolog-
ical recordings. For the moment we do not know any direct
evidence supporting this prediction.

The third prediction concerns the information flow in
the afferent vestibular nerve. We predict that the striolar
afferents sense a domain of acceleration as large as the
domain sensed by the extrastriolar afferents. However, at
least for the utricle, where only one polarization vector
occurs along the striola, the receptive field is unilateral, i.e.
only medio-lateral excitation occurs for the striolar affer-
ent system. Note that the four striolae together construct
a fairly complete mapping of the acceleration domain (see
Fig. 7). Amazingly, there is a blind angle directed down-
ward, which was also present in the data of Fernandez
and Goldberg.

Several existing results help to justify the assumption we
made on the hair cells: first, the specificity of striolar bun-
dles compared to extrastriolar bundles was established by
Peterson et al. for turtle’s utricle (Moravec and Peterson
2004; Rower and Peterson 2004, 2006; Xue and Peterson
2006). In particular the type I cells in the striolar region have
more numerous and thicker stereocilia, with steeper slope,
smaller ratio of kinocilium height over highest stereocilium
height (KS), making them adapted to higher frequency tun-
ing. In addition these cells have particularly wide bundles
in the direction of the tangent to the striola, i.e. parallel to
the PRL. These properties were confirmed in rodents by Li
et al. (2008). According to Lindeman (1973), in mammals,
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the striolar bundles are wing shaped with more stereocilia
along the axis orthogonal to the sensitivity axis, but bun-
dles of peripheral cells are more round and compact. Phasic
responses are expected for these wider hair bundles, which
accords with a broader detection of acceleration directions.
Our assumption on the hair cell receptive field are justi-
fied by the simulation results of Nam et al. (2007a, b):
using parameters of striolar hair cells bundles, in particu-
lar transversal wideness, the authors found a plateau around
the best response and a non-linear sudden decreasing of the
depolarization of the hair cell for transversal stimulations.
Of course, to confirm the stability of our model we have to
test a more general non-linearity than sin8(α), but the men-
tioned studies give a direct justification of our assumption.
However our precise hypothesis that the striolar type I hair
cells detect a plane more than a direction has to be directly
verified in situ. The fact that the receptive fields of hair cells
are large in the striola is compatible with the rapid reaction
of the striolar system.

The reported afferent cell receptive fields do not have the
same kind of non-linear properties: on the contrary, a non-
zero response of afferent neurons is observed for transversal
stimulations, 15/100 according to Fernandez and Goldberg
(1976a, b, c), and from 4/100 for regular to 8/100 for irreg-
ular afferents, in gerbil (Dickman et al. 1991), or pigeon (Si
et al. 1997). Rowe and Peterson (2006) discussed the origin
of this behavior and proposed the hypothesis that the resid-
ual response comes from the diversity of the preferences of
the contacted hair cells. Note that the majority of afferents
have bouton contacts with type II hair cells in addition to
their calyces, so that the enlargement of their receptive field
could come from these type II cells as well as from type I
cells.

The central functional hypothesis of our approach is that
multiple calyces allow an afferent neuron to “multiply the
reaction of hair cells”, as do a coincidence detection in
the spatial domain or in the temporal domain. The idea is
that along the striola there is more statistical independency
among hair cells integration, which accords with the large
distances between these cells and the distribution of small
otoconia above the striola (Watanuki et al. 1971), resulting
in a multiplicative joint distributions for the activity of the
afferent cells.

Thus we suggest that striolar afferents proceed by elim-
ination, intersecting a set of incomplete sources of infor-
mation, primarily coming from type I hair cells that are
biased to detect planes of directions more than individ-
ual directions. We can say that afferent neurons signal a
probability of acceleration (or acceleration change) pro-
portional to the product of the individual probabilities of
connected hair cells. This could make them bayesian esti-
mators of motion from conditionally independent sources:
P(A|H1, H2, ...) = P(H1|A)P (H2|A)...P0(A)/P (H),

where the variable A denotes the acceleration direction,
the variable H = (H1, H2, ...) denote the set of hair cells
responses, and P0(A) denotes the a priori probability on
the acceleration. The denominator P(H) is necessary in the
above Bayes formula, it is the total probability on the stimu-
lus A. The a priori probability could be uniform, but a much
more interesting assumption is that the efferent system and
the type II hair cells modulate this a priori knowledge. For
a recent discussion of the application of Bayes inference to
neural systems see (Vilares and Kording 2011).

The hypothesis that the afferent population detects the
variation of acceleration direction as uniformly as possible,
corresponds to the maximization of the information on the
change of movement direction or gravitation direction.

Known results (see Goldberg et al. 1990 and Eatock
and Songer 2011) support the fact that striolar afferents are
efficient for a dynamical detection, transmitting a signal
between the jerk and the acceleration of the head. To effec-
tuate such a derivative in time we hypothesized a kernel
represented by a Riemann-Liouville integral, i.e. a fractional
derivative of a delta function (cf. Eq. (17) in Section 2).
Thus we assume that the neurophysiology of afferent cells,
probably helped by calyces synapses, is able to reverse the
integration into a differentiation. A convincing argument for
this derivative function comes from the results of Highstein
et al. (2005) on the afferent neurons to the cristae of semi-
circular canals, where it was established that the gain and the
phase both increase with the frequency of the stimulation for
frequency after 5-10Hz, which cannot be due to the biome-
chanics of the semicircular canals and the cupula (Rabbitt
1999). Thus this effect is probably due to the physiology of
hair cells and afferent cells.

Ross et al. (1990) have investigated the morphologi-
cal basis for directional sensitivity of vestibular afferents
receiving several hair cells. They agreed with Tomko et al.
(1981) to discard a simple averaging process. More recently
Ross et al. (2000) have elaborated a three dimensional finite
volume model of calyces and ribbon synapses to study the
effect of changing geometry of calyces, location and num-
ber of synapses, directional input, and activation timing.
This computational tool could be used to verify our asser-
tion. More generally it is evident that a more elaborate three
dimensional computation is needed to give a better test of
our model and its robustness.

In our computational study we have considered type I
hair cells perfectly arranged along a curved line, and affer-
ent cells contacting exactly two hair cells. In reality, the
striolar region is extended, the polarization vectors of the
hair cells have a large variability, and the afferents in their
majority contact also type II cells, moreover some afferents
enclose only one hair cell, and some others enclose three
cells or more. How can we manage this variability and this
complexity?

cite.fernandez_goldberg_1976b
cite.fernandez_goldberg_1976c
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Note that, in our model, each place along the striola curve
counts for several type I cells, because it represents as many
hair cells the selected afferents contacting this place incap-
sulate. Thus the striola curve in our model represents a
narrow band around the striola on the macula.

Although it would be important to introduce more vari-
ability in our model, for example using a random processing
in place of a simple geometric model, in the present study
we do not add any detail that could by itself have strong
correcting effects.

We can expect that the complexity of the biological
system preserves the simple principles and augments the
information flow.

4.1 Limits of our model

First, the division of the striolar region on the saccule by the
PRL (mentioned in Eatock and Songer 2011), seems to be
contradictory with the assumption of continuity of the polar-
ization. However, in birds the striola possesses this kind of
structure on both the utricle and the saccule, but the studies
of Dickman et al. (Si et al. 2003; Zakir et al. 2003), show
that in this case the afferent neurons contact hair cells on the
same side of the PRL, and that the true striola is made of
two components.

Second, the majority of striolar afferents contact type II
and type I hair cells, but we never have used this overlap-
ping in our model. It could be possible that type II hair
cells are responsible of a better precision in sensing the
preferred direction of the afferent neurons. Also they can
participate in the regulation of gKL conductances which is
necessary for the activation of synapses in calyces. Another
natural idea for the contribution of type II cells to the
information processing along the striola is that that they
could be very helpful to take into account the intensity
of the sensed acceleration vectors. In fact, in our model
we have only considered acceleration directions, in par-
ticular it was the only element considered for population
selection, but the intensity should be considered in any
functional test.

Third, the irregular dynamics of the striolar afferents is
an essential property for the vestibular information flow,
but we did not model it, as it could be (see Smith and
Goldberg 1986). The true selection of a subpopulation for
jerk detection should be done by including the dynamics.
Thus more computational work has to be done to obtain a
complete proof of our model. A complete model should take
into account hair cells bundles and polarization variability,
the complex geometry of the striolar region, the modeling
of calyces terminations, the ion channel kinetics of the hair
cells and of their afferents, the modulation by type II cells
and the propagation of spike trains along the afferent axons.

4.2 Phasic and tonic information

Our model fits well with the hypothesis of the existence of
a phasic, irregular, high frequency adapted, striolar sensory
subsystem, responsible for linear jerk detection and short
latency vestibular information processing.

As otolith end organs and semi-circular canals conjugate
their message in the vestibular nuclei, the striolar system
information must be combined with a corresponding canal
afferent subsystem. Such a subsystem was described in the
center of the crista ampullaris, with comparable physiolog-
ical characteristics although not identical, responsible for
detecting rotation acceleration (see Fernandez and Goldberg
1976a, b, c).

However, the set of afferent dendrites contacting otolith
maculae and canals cristae forms a complex parallel pro-
cessing of presynaptic micro-circuits, with type I termi-
nations regulating type II dendrites, as explained by Ross
(1997, 2003). Thus the irregular subsystem must not be con-
founded with the subsystem of pure calyx afferent neurons.
In particular, in mammals it has been shown that type I hair
cells are found everywhere on the maculae and on the cristae
(see Lindeman 1969), and that dimorphic connections, mix-
ing calyces and boutons, are largely dominant. In fact, the
dynamical properties of phasic-irregular afferent neurons,
having a gain which augments with the frequency, depend
more on the position of their projections with respect to the
macula than on the type of contact (see Fernandez et al.
1990). This is true for otoliths and for semi-circular canals.

Besides, it was observed that irregular and regular affer-
ents of otoliths and of canals do not generate completely
separate flows in the central vestibular organs (see Boyle
et al. 1992; Peterson 1988; Goldberg 2000). Their projec-
tions overlap considerably in the vestibular nuclei. They
both contribute to the vestibulo-ocular reflex (VOR) and
vestibulo-collic reflex (VCR), that stabilize gaze and head
respectively, although the irregular input is more involved
in the VCR than in the VOR and the reverse is true for the
regular input (see Minor and Goldberg 1991; Boyle et al.
1992). In frogs, phasic and tonic activities in the vestibu-
lar nuclei are segregated, but this could be not strictly the
case in mammals (nor amniotes) (see Straka et al. 2004;
Eugene et al. 2011). However, the phasic primary vestibular
information of otoliths and canals can generate short latency
responses, participating to synchronization in motor con-
trol, posture and autonomic modulation. For instance, the
jerk information on translation is implicated in early ocular
compensation (compensatory nystagmus), (Bronstein and
Gresty 1988; Hess 1992), or in subjective vertical assign-
ment (Lorincz and Hess 2008). For birds, experiments of
Jones et al. (1998) on chicken described a net jerk inten-
sity signal, whereas for mammals (Lange and Jones 1990) a



144 J Comput Neurosci (2013) 35:125–154

fractional order jerk signal (between acceleration and jerk)
is reported.

The suggestion we have deduced from our present model
of the striola, namely that phasic and tonic vestibular affer-
ents cover the same geometrical fields but at different
dynamical and frequency domains, is in favor of over-
lapped information flows between phasic and tonic pathway,
but where different contexts should decide of different
ranges of contributions of these pathways for integrated
adaptation.

4.3 Evolution of the striola complex

Our model can have also an interest from the point of view
of evolution. It does not apply to most fishes but it applies
to mammals and only partially to birds.

During the evolution of amniotes, the contact with the
earth has generated a variety of somato-sensory and propri-
oceptive information sources to control posture and motion.
However, during rapid locomotion the instability of tran-
sient contacts makes the somato-sensory information diffi-
cult to be managed. Consequently it can be expected that
vestibular organs of amniotes shifted their sensitivity to
more dynamical parameters. This could justify the existence
of a subsystem specialized in controlling high order motion
likely by sensing acceleration derivatives, thus providing
a fundamental capacity for anticipation (cf. Berthoz et al.
(2011) A comparative study between lamprey, rabbit and cat
has shown that from the first to the two others there is a shift
from vestibular to somatosensory information for postural
control (Deliagina et al. 2008). It is possible that an already
existent system was adapted for such a new function.

In fact, the presence of the striola has been observed on
the otolith maculae of most vertebrate species, with a vari-
ety of forms (cf. Lu (1998)), and the heterogeneity of hair
cells in vestibular sensors is as old as vertebrates. Even
today lampreys have different kind of hair cells on their
maculae and cristae. For more recent species under water,
the cichlid fishes, Chang et al. (1992) and Lanford et al.
(2000) discovered a distinct type of hair cells along the stri-
ola, named type I-like, suggesting that other hair cells on the
macula are homologous to type II cells in mammals. This
indicates that a functional division on the macula is not an
exclusivity of amniotes. However, several facts indicate that
the striola in cichlids and mammals has different functions:
calyces exist only in amniotes (with rare exceptions on the
crista of fishes), efferent neurons attain only type-I like cells
in fishes, but in amniotes they attain all types. Moreover
type-I like cells of fishes reverse their polarity on the striola
curve, that is the PRL coincides with the striola. In mam-
mals, the polarization of the hair cells along the striola varies
continuously and this specificity has been important for our
model.

Remarkably, in many vertebrates, including amniotes
except mammals, there exists an important additional
otolith end organ, the lagena, which is also supposed
to serve vestibular function. But the arrangement of hair
cells polarity along the striola of the lagena is different
than the one we have discussed in this manuscript. The
polarity is parallel to the curve. There is also a mac-
ula neglecta, which, even if small in size, is suspected to
provide information about the derivative of angular accel-
erations (Brichta and Goldberg 1998). It is amazing to
observe that on the saccule of the dipnoi, which is the
closest extant fish to tetrapodes, the striola has the stan-
dard observed S shape, that has curvature and torsion
(Platt et al. 2004).

In birds, the striola on the utricle, saccule and lagena,
appear much more complex than in reptiles and mammals.
On the utricle, for instance, the striola has a medial pro-
longation, where the hair cells are differently organized and
oriented, and along the main part of the curve, there is a
line of type II hair cells, enclosed by two lines of type I
hair cells. Moreover, the otolith afferents seem to detect the
jerk on all the macula surface, and it seems that all these
afferents are phasic and phase advanced (Si et al. 2003).
The increased complexity of the striola structure in birds
could reflect a new functionality, such as flying. Thus our
model applies only to a part of the striola of birds. We
plan to investigate the function of the striola in birds in a
future study.
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Mathematical appendix

This appendix provides the mathematical definitions, theo-
rems and proofs, underlying our Striola model. In particular
it describes the virtual surface generated by a twisted curve
in the Euclidian space and the optimal shapes of curves
allowing an uniform detection of acceleration directions.

The suggested information processing of the striolar
region on the otoliths macula lays on the correspondence
between the pairs of points of a space curve and the direc-
tions orthogonal to the tangents at the points. The shape of
the striola is dictated by the range and the regularity of this
correspondence, thus we will conduct a study of its prop-
erties. In Section A.1 we show that the regularity depends
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on the existence of curvature and torsion. This gives an ele-
mentary introduction in the affine framework to the more
sophisticated investigations of Sections A.2 and A.3.

Notations: we consider a smooth curve S in the three
dimensional Euclidian space, and we study the correspon-
dence between the pairs of points (P1, P2) of S and the
directions D that are orthogonal to S in P1 and P2. We are
particularly interested in the case where this correspondence
defines a mapping D = F(P1, P2) for pairs of points P1, P2

that are sufficiently closed in S. We will consider several
natural measures of area on the set of pairs of points on
S and on the set of directions in the space. The regularity
and uniformity of the mapping F is encoded by its jacobian
determinant J, then we will study the link between J and the
geometry of S. From the Euclidian point of view it is natural
to retain on the set of points pairs, the measure associated to
the canonical coordinates (σ1, σ2), where σ1 = s1 + s2 and
σ2 = s1s2 are the elementary symmetric functions of the
curvilinear abscissas s1, s2 of the respective points P1, P2

on S, and on the set of directions D the measure given
by solid angle; this is the framework of Section A.2. In
Section A.3 we restrict our attention to the case of a spheri-
cal curve S, for application to our model of the striola curve.
However ,we begin in Section A.1 with the Cartesian point
of view, where computations are more elementary. In this
case a natural parametrization for points on S comes from
the orthogonal projection on one axis and natural coordi-
nates for directions in the space come from the intersection
with a fixed plane. (Figs. 13 and 14)

A.1 Cartesian optimal striola

Let us consider a space curve S described in parametric form
by cartesian coordinates

x = f (t), y = g(t), z = h(t). (32)

If a vector
−→
A has coordinates u, v, w, its scalar product with

the tangent
−→
T of S is given by

−→
A .

−→
T = f ′(t)u + g′(t)v + h′(t)w. (33)

The orthogonality equation
−→
A .

−→
T = 0 gives

f ′(t)u + g′(t)v + h′(t)w = 0. (34)

We suppose that
−→
T is nowhere 0, and that there exist a

conical domain of
−→
A where the Eq. (34) has two solutions

t1(u, v, w), t2(u, v, w) (eventually equals). In this case, for
each

−→
A in the domain, there exist two parameters t1, t2 and

a non-zero real number c such that

c
−→
A = −→

T (t1) × −→
T (t2), (35)

Fig. 13 Representation of the preferred direction encoded by each
couples of cells. It is here computed for the curve x(t) = t/

√
(2), y =

t2, z = √
(2)/3 × t3, for t ∈ [−10; 10], with 25 cells distributed

equally along t. Panels show the projection of this surface in the
(x, y), (y, z) and (x, z) planes, the color palette represents the value
of missing component (z, x and y respectively)
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Fig. 14 Representation of the virtual surface �, defined by Eqs.
(34–36), whose normals define the perceived directions. It is here com-
puted for the curve x(t) = t/

√
(2), y = t2, z = √

(2)/3 × t3, for

t ∈ [−10; 10]. Panels show the projection of this surface in the (x, y),
(z, y) and (x, z) planes, as well as in an arbitrary plane, the color
palette represents the same z value in each of the panels

which translates in coordinates as

cu = g′(t1)h′(t2) − g′(t2)h′(t1), (36)

cv = h′(t1)f ′(t2) − h′(t2)f ′(t1), (37)

cw = f ′(t1)g′(t2) − f ′(t2)g′(t1). (38)

A classical theorem asserts that any smooth function ϕ

(resp. polynomial function) of two real variables t1, t2
(defined in a domain of the plane which is symmetric with
respect to the diagonal t1 = t2) which satisfies ϕ(t1, t2) =
ϕ(t2, t1) for any pair (t1, t2), is equal to a smooth (resp. poly-
nomial) function �(σ1, σ2) where σ1 = t1+t2 and σ2 = t1t2
are the elementary symmetric functions of t1 and t2.

In addition we can suppose that one of the coordinates
u, v, w can be arbitrarily chosen, say for instance w = 1.
Then we get a transformation F from a domain of (σ1, σ2)

to a domain of (u, v). Let us denote J (σ1, σ2) the jacobian
determinant of the transformation F.

Theorem 1 Let us suppose that J is regular and non-
vanishing in the neighborhood of a point (0, 0) correspond-
ing to a pair of coincident points, then it exists an Euclidian
affine change of coordinates x, y, z, where we have f (0) =
0, f ′(0) 
= 0, g(0) = g′(0) = 0 but g′′(0) 
= 0, and
h(0) = h′(0) = h′′(0) = 0 but h(3) 
= 0. In other terms,
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after an Euclidian affine change of frame, the valuations of
the Taylor series of g and h are the same as the ones of the
twisted cubic.

Proof We begin by fixing the x axis in such a way that
f (0) = 0, f ′(0) 
= 0. We change the parametrization t to
have f (t) = at in a neighborhood of t = 0. It is easy to
show this has no effect on the conclusions of the theorem.
We suppose w = 1. In the considered domain of u, v there
exist two solutions t1(u, v), t2(u, v) (eventually equals) of
the orthogonality equation, that is:

au + g′(t1)v + h′(t1) = 0, au + g′(t2)v + h′(t2) = 0.

(39)

By solving this linear system we obtain u, v from t1, t2:

u = h′(t2)g′(t1) − h′(t1)g′(t2)
a(g′(t2) − g′(t1))

, (40)

v = h′(t1) − h′(t2)
g′(t2) − g′(t1)

. (41)

On another side, by the implicit function theorem we have

(g′′(t1)v + h′′(t1))
∂t1

∂u
= −a, (42)

(g′′(t1)v + h′′(t1))
∂t1

∂v
= −g′(t1), (43)

and similar equations for t2. Thus the jacobian determinant
of the transformation from t1, t2 to u, v is equal to

J ′(u, v; t1, t2) = a−1(g′(t2) − g′(t1))−1(g′′(t1)v + h′′(t1))
× (g′′(t2)v + h′′(t2)) (44)

We remark that where t1 = t2, the function J ′ has a priori
a simple zero (t1 − t2) along the diagonal subset. However
the jacobian of the transformation which maps (t1, t2) to
(σ1, σ2) is equal to t1 − t2, so the jacobian of the mapping
F in the coordinates u, v and σ1, σ2 is given by the regular
symmetric function

J (σ1, σ2) = [a(t1 − t2)(g
′(t2) − g′(t1))]−1

×(g′′(t1)v + h′′(t1))(g′′(t2)v + h′′(t2))
(45)

that is in general finite and non-zero along the diagonal.
Let us suppose that J is a smooth function without zero

in an open set of (t1, t2) containing (0, 0). By substitution
of the values of u and v we obtain the following functional
equation for g and h:

[g′′(t1)(h′(t1) − h′(t2)) + h′′(t1)(g′(t2) − g′(t1))]
[g′′(t2)(h′(t1) − h′(t2)) + h′′(t2)(g′(t2) − g′(t1))]

= J (t1, t2)a(t1 − t2)(g
′(t2) − g′(t1))3, (46)

Let us suppose that t1 and t2 both approach t, in such a man-
ner that t = αt1 + βt2 with α, β bounded and α + β = 1.

Up to the order 4 in t2 − t1 (or t1 − t or t2 − t because it is
the same order) we have

[((t1 − t)(t1 − t2) + 1

2
(t2 − t1)(t1 + t2 − 2t))h′′(t)g(3)(t))

+((t1 − t)(t2 − t1)+ 1

2
(t1 − t2)(t1 + t2 −2t))h(3)(t)g′′(t))]

[((t2 − t)(t1 − t2) + 1

2
(t2 − t1)(t1 + t2 − 2t))h′′(t)g(3)(t))

+((t2 − t)(t2 − t1)+ 1

2
(t1 − t2)(t1 + t2 −2t))h(3)(t)g′′(t))]

= −aJ (t, t)(t1 − t2)
4g′′(t)3, (47)

We also have t1 − t = β(t1 − t2), t2 − t = α(t2 − t1),

t1 + t2 − 2t = (2β − 1)(t1 − t2), then, at the limit, we get
[

1

2
h′′(t)g(3)(t)) − 1

2
h(3)(t)g′′(t))

]

[
−1

2
h′′(t)g(3)(t)) + 1

2
h(3)(t)g′′(t))

]

= −aJ (t, t)g′′(t)3. (48)

We would have found the same formula by fixing t1 = t and
looking at t2 tending to t.

Let us write G = g′′ and H = h′′, we obtain

(G′H − GH ′)2 = 4aJG3, (49)

From this we see that G cannot vanish, meaning that g is
necessarily convex or concave. By changing the sign of the
coordinate y in the ambient space, we can suppose that g is
convex, then G is positive and J positive.

By using a translation and a rotation in the plane x, y we
can suppose that g(0) = g′(0) = 0, but g′′(0) = G(0) > 0,
which gives a development

g(t) = 1

2
bt2 + 1

3
b1t

3 + ... (50)

When g is known as well as the initial condition H(0) =
h′′(0), the linear differential equation

H ′ = (G′/G)H + 2(aGJ)1/2, (51)

determines H as

H(t) = G(t)
H(0)

G(0)
+ 2G(t)

∫ t

0

√
aJ (s)

G(s)
ds. (52)

Then, knowing the values of h(0), h′(0) in addition to h′′(0),
we obtain h by two other quadratures.

With a vertical translation we can assume h(0) = 0, and
with a rotation in the plane x, z we can assume h′(0) = 0.
By rotating the plane y, z we can then make h′′(0) = 0.
Now we can apply the formula (52) and the Theorem 1
follows.

When f, g, h satisfy the conclusions of the Theorem 1,
the axis x, y, z are respectively aligned with the tangent, the
normal and the binormal axis of the curve S at the origin
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point 0. The curvature κ(0) and the torsion τ(0) of S in 0
are given by

κ(0) = g′′(0)

f ′(0)2
, τ (0) = − h(3)(0)

f ′(0)g′′(0)
. (53)

Let us verify by direct computation that every polynomi-
als g, h of respective degree 2 and 3 satisfy the formula (46)
for all points (t1, t2) with J a non-zero constant:
We can write

f (t) = at, g(t)

= b

2
t2 + b1t + b0, h(t) = c

3
t3 + c2t

2 + c1t + c0,

(54)

then we have

g′(t2) − g′(t1) = b(t2 − t1), (55)

h′(t1) − h′(t2) = c(t1 − t2)(t2 + t1) + 2c2(t1 − t2), (56)

g′′(t) = b, (57)

h′′(t) = 2(ct + c2), (58)

then

g′′(t1)(h′(t1)−h′(t2))+h′′(t1)(g′(t2)−g′(t1))=−bc(t2−t1)
2, (59)

g′′(t2)(h′(t1)−h′(t2))+h′′(t2)(g′(t2)−g′(t1))= bc(t2 − t1)
2, (60)

(t2 − t1)(g
′(t2) − g′(t1))3 = b3(t2 − t1)

4, (61)

and Eq. (46) is satisfied with

b2c2

b3
= aJ, (62)

that is

J = c2

ab
. (63)

Theorem 2 Suppose that f, g, h satisfy the conclusions of
the Theorem 1, and that f is a linear function of t; then J
is constant in the neighborhood of the diagonal if and only
if g is a polynomial of degree 2 and h is a polynomial of
degree 3.

Proof Let us fix the constant J and the parameter t2; the
two Eqs. (46) and (49) constitute a system of two non
autonomous ordinary differential equations in two unknown
functions g′, h′ of order one in g′ and order two in h′, so by
the Cauchy-Lipschitz theorem, the general solution depends
on three independent real parameters when the initial time
is chosen, thus the general solution of the system when ini-
tial time is let free depends on four real constants. But we
already know solutions of the system depending on four real
parameters, they are polynomials in t of degree 1 for g′ and
of degree 2 for h′. CQFD.

Thus, in the case of Theorem 1, we obtain a semi-cubic
parabola

x = at, y = 1

2
a2κ(0)t2, z = −1

6
a3κ(0)τ (0)t3. (64)

A.2 Euclidian optimal striola

The natural measure on directions in a 3D Euclidian space
is the solid angle dσ , and the natural parametrization of a
curve is by its arc-length s. Therefore it is natural to look at
the correspondence between pairs of points and directions
in these coordinates. We will first establish a formula for
the Jacobian determinant in these coordinates. As before we
will constat it has a simple zero. As in the Cartesian study,
the symmetric coordinates operate a regularization. But the
new ingredient here is the surface obtained by translating
the curve by itself, that was considered by Sophus Lie, for
application to minimal surfaces. The points on this auxiliary
surface form another symmetric parametrization of pairs of
points, giving another natural regularization.

Let us introduce a surface � associated to the curve S, it
is formed by adding the pair of points of the curve:

x(s1, s2) = f (s1) + f (s2), (65)

y(s1, s2) = g(s1) + g(s2), (66)

z(s1, s2) = h(s1) + h(s2). (67)

Let us denote by P1, P2 the points of abscissas s1, s2 respec-
tively on the curve S. By fixing s2 (resp. s1) we see that the
tangent vector

−→
T1 (resp.

−→
T2 )to S in P1 (resp. P2) is tangent

to the surface �. Then the cross product
−→
T1 × −→

T2 is nor-
mal to �. Thus for generic points, when

−→
T1 and

−→
T2 are not

collinear, the unit normal vector −→
n to � at the point cor-

responding to (s1, s2) is parallel to the intersection of the
normal planes at S in P1 and P2. This is the way � repre-
sents the pair of points (P1, P2) on S, by developing their
associated direction D in the space.

This surface � is a particular case or a “Translation
Surface”, in the sense of S. Lie, H. Poincaré, G. Darboux
(Leçons sur la Théorie gé né rale des Surfaces et les appli-
cations gé omé triques du Calcul Infinité simal; Part I, L.III,
ch. VI, VII, VIII, IX; (Darboux 1887)). The general transla-
tion surfaces are the surfaces described by the sum of points
of two given space curves. In our case, the curve is translated
by itself.

Note that the surface which is defined as the locus of mid-
dle points of the segments that join the pairs of points of the
curve S, is the surface homothetic to � in the ratio 1/2, then
it has the same normals and could be used in the place of �

in what follows.
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According to Lie, by using imaginary parameters, any
minimal surface is described as a translation surface starting
from a complex curve with tangent vectors of zero lengths.

Caution: the surface � does not represent the macula,
it represents the directions of acceleration detected by the
striola by its normal vectors. It is a kind of virtual macula
associated to the striola. The parametrization by s1, s2 is sin-
gular, because two pairs (s1, s2) and (s2, s1) represent the
same point, but the surface � itself is in general regular. Let
us see what happens in the example of the surface generated
by the twisted cubic; in this case we have:

x(t1, t2) = t1 + t2, (68)

y(t1, t2) = t2
1 + t2

2 , (69)

z(t1, t2) = t3
1 + t3

2 . (70)

We then have

z − xy = t1t
2
2 + t2t

2
1 = x(t1t2) = 1

2
x(x2 − y), (71)

so � is included in the smooth graph of a polynomial
function:

z = 1

2
x(y + x2). (72)

And it is easy to show that every point (x, y, z) in this graph
such that y ≥ x2/2 belongs to �. Again the parametriza-
tion problem comes from the symmetry between t1 and t2,
but the regular prolongation comes from the fact that every
symmetric polynomial of t1, t2, like t3

1 + t3
2 , is a function of

x = t1 + t2 and y = t2
1 + t2

2 . (This theorem needs ratio-
nal coefficients, integers are not sufficient are they were for
t1 + t2 and t1t2, but this has no consequence in the present
context.) As the example of twisted cubic shows, the set of
directions that are detected by real parameters t1, t2 is the
set of normals of a regular surface with boundary.

For the general twisted cubic

x = at, y = b

2
t2, z = c

3
t3 (73)

we find the region y ≥ bx2/4a2 on the gather surface

z = c

6a3b
(bx3 + 2a2xy). (74)

In what follows, the numbers s1, s2 will design arc-
lengths on the curve S. We denote by

−→
T1 resp.

−→
T2 the unit

tangent to the curve S at s1 resp. s2. Let us suppose they are
linearly independent and denote by −→

n the unit normal to the
plane they generate, such that (

−→
T1 ,

−→
T2 ,

−→
n ) constitute a right

handed oriented reference frame, which corresponds to the
vector product formula: | sin(arcos(

−→
T1 .

−→
T2 ))|−→n = −→

T1 ×−→
T2 .

For any surface in R
3 the Gauss mapping is the map to

the unit sphere, which sends a point to the unit normal of the
surface in this point, thus in our case the Gauss mapping γ

sends the point of � corresponding to s1, s2 onto the vector

−→
n . This map is specially interesting for us because −→

n rep-
resents the preferred direction of acceleration of an afferent
cell associated to the parameters (s1, s2).

By a theorem of Gauss, the determinant of the jacobian
of γ from orthonormal coordinates on � to solid angle is
the Gauss curvature function K of the surface �.

The Riemannian metric on � has coefficients gij defined

by the scalar products
−→
Ti .

−→
Tj , cf. Coxeter, Introduction to

Geometry (Wiley, 1969). In our case g11 = g22 = 1. The
superficial area measure is given in these coordinates by the
formula

dA = √
gds1ds2, (75)

where we noted

g = g11g22 − g2
12 = 1 − (

−→
T1 .

−→
T2 )2 (76)

Observe that the two families of curves respectively defined
by fixing s1 +s2 or s1 −s2 equal to constants, are orthogonal
one to each other.

We denote by gij the coefficients of the inverse matrix of
(gij ); they are

g11 = g22 = g−1, g12 = g21 = −g−1g12. (77)

The first Christoffel symbols (describing the intrinsic
parallel transport on the surface) are defined as

�ij ;k = 1

2
(∂igjk + ∂jgik − ∂kgij ). (78)

In our case the only non-zero symbols are

�11;2 = ∂1(g12), �22;1 = ∂2(g12). (79)

The second (and more usual) Christoffel symbols are
defined as

�k
ij =

∑
gkl�ij ;k. (80)

Thus in our case they are non-zero only if i = j . All the
non-zero symbols are given by:

�1
11 = −g12∂1(g12)

g
, �2

11 = ∂1(g12)

g
, (81)

�1
22 = ∂2(g12)

g
, �2

22 = −g12∂2(g12)

g
, (82)

It is useful, in our case, to relate these intrinsic quantities
with the parametric representation; for that we introduce the
second derivatives vectors

−→
Tij = ∂

∂sj

−→
Ti ; (83)

Then the Christoffel symbols are given by scalar products as

�ij ;k = −→
Tk .

−→
Tij (84)

We can also define

bij = −→
n .

−→
Tij . (85)
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They are the coefficients of the second fundamental form of
�. In our present case only b11 and b22 could be non-zero.
The corresponding Weingarten coefficients are

bi
j =

∑
gikbkj , (86)

thus, in our case

b1
1 = g−1b11, b2

2 = g−1b22, b1
2 = b2

1 = −g−1g12b12.

(87)

Then we obtain the “equations of Gauss”:
−→
Tij =

∑
�k

ij

−→
Tk + bij

−→
n . (88)

If we denote by b the discriminant of the second fundamen-
tal form

b = b11b22 − b2
12, (89)

the Gauss curvature is defined by

K = b

g
. (90)

The Theorema egregium of Gauss says that K can be
expressed by the derivatives of the second symbols. A nice
formula was found by Liouville (cf. Coxeter p.367):

√
gK = ∂

∂s2

(√
g

g11
�2

11

)
− ∂

∂s1

(√
g

g11
�2

12

)
(91)

Note, in our case we have �2
12 = 0, and

�2
11 =

−→
T11.

−→
T2

g
. (92)

(This is because
−→
T11 is orthogonal to

−→
T1 .)

The Gauss map has the curvature as its jacobian
determinant:

dσ√
gds1ds2

= K, (93)

Thus the jacobian determinant from ds1ds2 to dσ is given
by

J ′ = √
gK = ∂

∂s2

−→
T11.

−→
T2√
g

(94)

Which can be rewritten as

J ′ = (
−→
T1 .

−→
T2 )(

−→
T11.

−→
T2 )(

−→
T22.

−→
T1 ) + g(

−→
T11.

−→
T22)

g3/2
(95)

From Section A.1 we know that J ′ has a simple zero
along the diagonal (of the first order like (s1−s2) multiplied
by a constant). This invitees to make a re-normalization of
J ′. A natural choice is to divide by s1 −s2 because this is the
jacobian of the transformation from the coordinates (s1, s2)

to the elementary symmetric function σ1 = s1 + s2, σ2 =
s1s2. But also

√
g has a first order zero on the diagonal

s1 = s2, then an alternative natural choice to re-normalize J ′

is to take the curvature K itself. This corresponds to the rep-
resentation of the set of pairs of points on S by the surface
� itself. With this second choice, the optimality problem
becomes: to find the curves S such that the associated dou-
ble surface of translation � has the less possible changing
Gaussian curvature. We will compute now this curvature K,
and the density

√
g.

The jacobian of the mapping from affine coordinates
(u, v, 1) on directions to the spherical angle measure is
given by

J (u, v; σ) = 1√
1 + u2 + v2

, (96)

where u, v are given in function of s1, s2 by the formulas

u = g1h2 − h1g2

f1g2 − g1f2
(97)

v = h1f2 − f1h2

f1g2 − g1f2
(98)

For computation another formula is helpful, coming from
Weingarten (see Coxeter 1969 p.354):
√

gK = [−→
n ; ∂1

−→
n ; ∂2

−→
n

]
, (99)

where the bracket denotes the determinant of vectors, or
triple product. In fact this Weingarten formula is the origin
of the recalled Liouville formula. In our present situation
the formula can be rewritten by using vector products as
follows:

g2K =
[−→
T1 × −→

T2 ; −→
T11 × −→

T2 ; −→
T1 × −→

T22

]
(100)

Theorem 3 Let us denote by κ, τ the curvature and torsion
of S, and κ̇, τ̇ their derivatives with respect to the arc-length
s on S; then along the double curve S on � we have the limit
formula

K = −τ 2

4
. (101)

At the first order in s1 − s, s2 − s, we have

K(s1, s2) = −τ 2

4

[
1 + (s1 + s2 − 2s)(τ̇ /τ )

]
, (102)

and

g(s1, s2) = κ2(s1 − s2)
2[1 + (s1 + s2 − 2s)(κ̇/κ)

]
. (103)

Proof We use Taylor formula for evaluating −→
t1 ,

−→
t2 , and

recurrently all terms in the Eq. (100). (Note that we verified
this result by using Eq. (90). The proof is a straightfor-
ward but tedious computation. As a corollary we obtain the
amazing result that for twisted curves, when τ has no zero,
the Gaussian curvature of the double surface is everywhere
finite and strictly negative.
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Theorem 3 is a precision of the Theorem 1, because it
shows directly that a curve giving good vector detection in
space must be twisted, but it uses the fact that curvature
and torsion are well defined, which is one of the results of
Theorem 1.

If we choose the surface � as the natural parametrization
of pairs of points (P1, P2) on S, the absolute value of the
Jacobian determinant from pairs of points to directions in
space is approximatively given by

|K| ≈ 1

4
τ 2(1 + d(ln(τ ))

ds
(σ1 − 2s)) (104)

for near points, thus, at the first order of approximation,
the optimal curves for uniform detection of directions must
have a constant torsion τ . But, if we choose the elementary
symmetric functions (σ1, σ2) as the natural parametrization
of pairs of points (P1, P2) on S, the absolute value of the
Jacobian determinant for near points is given by

|J | = √
g|K|/|s1−s2| ≈ 1

4
κτ 2(1+ 1

2

d(ln(κτ 2))

ds
(σ1−2s)).

(105)

Thus the optimal curves correspond to constant value of the
quantity τ

√
κ .

At higher orders in the formula of K it appears polynomi-
als in the two variables s1−s2, s1+s2−2s whose coefficients
are polynomials in the higher derivatives of κ, τ with respect
to s. At the order two for instance we obtain two coefficients
of the following form

P(κ, τ, κ̇, τ̇ , κ̈, τ̈ )

= κ2τ 2[Aκ̈/κ + Bτ̈/τ + C(κ̇/κ)2 + D(τ̇/τ)2

+ E(κ̇τ̇ /κτ) + F(κ2 + τ 2)
]

(106)

In particular, the only possibility that the order two compu-

tation of K gives a development − τ 2

4

[
1 + α(s1 − s2)

2
]

with
a constant α, is that κ and τ are constants. That is S must be
a circular helix.

The standard circular helix in the vertical cylinder of
radius a is defined as

x = a cos t, y = a sin t, z = ct. (107)

One has

κ = a

a2 + c2
, τ = c

a2 + c2
, (108)

a = κ

κ2 + τ 2
. (109)

(cf. Coxeter pp.323-325). The principal normal −→
p = −̇→

T /κ

is always horizontal and its binormal b, as its tangent
−→
T ,

makes a constant angle with the vertical. This binormal
vector

−→
b is important for us because it is the limit for

coincident points P1, P2 of the normal vector −→
n to the

surface �.
In the case of helix we have the following formula for the

curvature of �:

K = −τ 2

4

[
1 + a

κ

2
(cos(u1 − u2) − 1)

]−2
. (110)

In perception, some acceleration directions
−→
A could be

more natural than others. But, on directions in space, the 2D
spherical Von-Mises distributions have maximum entropy
among the laws when mean and variances are given; then
it would be interesting to look at curves giving approxima-
tively such laws for the preferred directions.

There is also a notion of generalized helix (cf. Coxeter
p.325). They are the curves where the ration τ/κ has a con-
stant value. They are characterized by the fact that their
tangent vectors make a constant angle with a fixed vector.
The standard twisted cubic is not a circular helix, but a lin-
ear transform of it is a generalized helix, that is τ/κ is a
constant, and it has near its vertex a torsion and a curvature
which are stationary. In fact let us consider the following
special twisted cubic:

x = t√
2
, y = t2, z =

√
2

3
t3; (111)

then its curvature and torsion are given by

κ = τ = 1

(1 + t2)2
(112)

(cf. Coxeter, exercise 17.8.2.)
Note that a usual name for the twisted cubic (or rational
normal curve) is rational helix.

A.3 Spherical optimal striola

Our computational models of striola (cf. Methods) belong to
a spherical surface M representing the macula. The normal
vector

−→
N along the curve S which represents the polar-

ization of hair cells disposed along S is the normal to the
tangent vector

−→
T which is also tangent to the sphere M.

The discussion in Section A.2 invites to consider as opti-
mal the spherical curves with constant regularized jacobian
determinant. We saw two natural choices; the first one, with
algebraic coordinates as (σ1 = s1 + s2, σ2 = s1s2) or
any regular functions of these coordinates, gives a constant
product κτ 2; the second one with geometric parametrization
by �, gives more simply a constant torsion τ .

We suppose that M is part of the sphere in the 3D Euclid-
ian space, centered in 0 of radius R. The variable point on the
curve S is written now X(s), where s denotes a curvilinear
abscissa on S. By definition, we have

Ẋ = −→
T ,

−̇→
T = κ

−→
p ,

−̇→
p = −κ

−→
T + τ

−→
b . (113)
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Let us denote C = 1/κ , D = 1/τ the radius of curvature
and the radius of torsion respectively. We have

−→
p = CẌ,

−̇→
p = C

...
X + ĊẌ, (114)

thus

−→
b = 1

τ

−̇→
p + κ

τ

−→
T = DC

...
X + DĊẌ + DC−1Ẋ (115)

That gives the following formulas for the tangent, normal
and binormal:

−→
T = Ẋ,

−→
p = CẌ,

−→
b = DC

...
X + DĊẌ + DC−1Ẋ

(116)

As X.X is constant equal to R2, we have X.
−→
T = 0, and

by derivation of this identity we get
−→
T .

−→
T + κX.

−→
p = 0.

But
−→
T has a norm equal to 1, thus we get X.

−→
p = −C, or

equivalently X.Ẍ = −1. By derivation again, we get Ẋ.Ẍ+
X.

...
X = 0, then X.

...
X = 0 because

−→
T and −→

p are orthogonal.
Then the scalar product X.

−→
b is equal to DĊX.Ẍ that is

−DĊ. Thus

X = −C
−→
p − DĊ

−→
b , (117)

and by equating the norm of X to R, this gives the well
known intrinsic equation for spherical curves:

C2 + D2Ċ2 = R2. (118)

When D is constant, this equation has for only solutions

C(s) = R cos

(
s − s0

D

)
. (119)

When D
√

C is constant, equals to A, this equation has for
solutions

C(s) = R.cnl2
(

R1/2(s − s0)

2A

)
, (120)

where cnl denotes the lemniscate elliptic function coslemn,
that inverses the lemniscate elliptic integral of Bernoulli and
Fagnano:

I (u) =
∫ 1

u

dt√
1 − t4

(121)

With the Jacobi-Guderman notations we have cnl(x) =
cn(x

√
2, 1/

√
2). (A nice reference for elliptic functions is

Greenhill (1892))
The associated functions

−→
T ,

−→
p ,

−→
b , X can easily be

deduced from the solutions of the following two by two
linear differential system:

dY (s)

ds
= i

2

(
κ(s) τ (s)

−τ(s) −κ(s)

)
Y (s) (122)

In fact, if Y (s) is a resolvent matrix of this system, and if we
introduce the imaginary Pauli matrices

e1=iσ1=
(

0 i

i 0

)
e2= iσ2=

(
0 1

−1 0

)
e3= iσ3=

(
i 0
0 −i

)

(123)

satisfying

e1e2 − e2e1 = −2e3, e2e3 − e3e2 = −2e1, e3e1 − e1e3 = −2e2,

(124)

then the matrices
1

2
Ye1Y

−1,
1

2
Ye2Y

−1,
1

2
Ye3Y

−1, (125)

decomposed in the basis e1, e2, e3 give respectively the vec-
torial functions

−→
T (s),

−→
p (s),

−→
b (s). Then the curve X(s)

can be deduced by one quadrature.
However there is no known explicit formula for Y (s)

when κ and τ correspond to the particular curvature function
C(s) we found before. We can only compute their Taylor
polynomials.
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