toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Laura Igual; Joan Carles Soliva; Antonio Hernandez; Sergio Escalera; Xavier Jimenez ; Oscar Vilarroya; Petia Radeva edit  doi
openurl 
  Title A fully-automatic caudate nucleus segmentation of brain MRI: Application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder Type Journal Article
  Year 2011 Publication BioMedical Engineering Online Abbreviated Journal BEO  
  Volume 10 Issue (up) 105 Pages 1-23  
  Keywords Brain caudate nucleus; segmentation; MRI; atlas-based strategy; Graph Cut framework  
  Abstract Background
Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations.

Method
We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure.

Results
We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis.

Conclusion
CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-925X ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ ISH2011 Serial 1882  
Permanent link to this record
 

 
Author Jaume Amores; Petia Radeva edit  url
doi  openurl
  Title Registration and Retrieval of Highly Elastic Bodies using Contextual Information Type Journal Article
  Year 2005 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 26 Issue (up) 11 Pages 1720–1731  
  Keywords  
  Abstract IF: 1.138  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ AmR2005b Serial 592  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title Approaching Artery Rigid Dynamics in IVUS Type Journal Article
  Year 2009 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 28 Issue (up) 11 Pages 1670-1680  
  Keywords Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.  
  Abstract Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGF2009 Serial 1545  
Permanent link to this record
 

 
Author Antonio Hernandez; Miguel Reyes; Victor Ponce; Sergio Escalera edit   pdf
doi  openurl
  Title GrabCut-Based Human Segmentation in Video Sequences Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue (up) 11 Pages 15376-15393  
  Keywords segmentation; human pose recovery; GrabCut; GraphCut; Active Appearance Models; Conditional Random Field  
  Abstract In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and pose recovery is obtained by combining human segmentation with Active Appearance Models and Conditional Random Fields. Results over public datasets and in a new Human Limb dataset show a robust segmentation and recovery of both face and pose using the presented methodology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ HRP2012 Serial 2147  
Permanent link to this record
 

 
Author Fosca De Iorio; C. Malagelada; Fernando Azpiroz; M. Maluenda; C. Violanti; Laura Igual; Jordi Vitria; Juan R. Malagelada edit  doi
openurl 
  Title Intestinal motor activity, endoluminal motion and transit Type Journal Article
  Year 2009 Publication Neurogastroenterology & Motility Abbreviated Journal NEUMOT  
  Volume 21 Issue (up) 12 Pages 1264–e119  
  Keywords  
  Abstract A programme for evaluation of intestinal motility has been recently developed based on endoluminal image analysis using computer vision methodology and machine learning techniques. Our aim was to determine the effect of intestinal muscle inhibition on wall motion, dynamics of luminal content and transit in the small bowel. Fourteen healthy subjects ingested the endoscopic capsule (Pillcam, Given Imaging) in fasting conditions. Seven of them received glucagon (4.8 microg kg(-1) bolus followed by a 9.6 microg kg(-1) h(-1) infusion during 1 h) and in the other seven, fasting activity was recorded, as controls. This dose of glucagon has previously shown to inhibit both tonic and phasic intestinal motor activity. Endoluminal image and displacement was analyzed by means of a computer vision programme specifically developed for the evaluation of muscular activity (contractile and non-contractile patterns), intestinal contents, endoluminal motion and transit. Thirty-minute periods before, during and after glucagon infusion were analyzed and compared with equivalent periods in controls. No differences were found in the parameters measured during the baseline (pretest) periods when comparing glucagon and control experiments. During glucagon infusion, there was a significant reduction in contractile activity (0.2 +/- 0.1 vs 4.2 +/- 0.9 luminal closures per min, P < 0.05; 0.4 +/- 0.1 vs 3.4 +/- 1.2% of images with radial wrinkles, P < 0.05) and a significant reduction of endoluminal motion (82 +/- 9 vs 21 +/- 10% of static images, P < 0.05). Endoluminal image analysis, by means of computer vision and machine learning techniques, can reliably detect reduced intestinal muscle activity and motion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ DMA2009 Serial 1251  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: