toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez edit  doi
openurl 
  Title Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem Type Journal
  Year 2020 Publication Mathematics Abbreviated Journal MATH  
  Volume 20 Issue (up) 8(9) Pages 1595  
  Keywords STEM education; Project-based learning; Coding; software tool  
  Abstract In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
 
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ISE Approved no  
  Call Number Admin @ si @ Serial 3722  
Permanent link to this record
 

 
Author Arjan Gijsenij; Theo Gevers; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Computational Color Constancy: Survey and Experiments Type Journal Article
  Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 20 Issue (up) 9 Pages 2475-2489  
  Keywords computational color constancy;computer vision application;gamut-based method;learning-based method;static method;colour vision;computer vision;image colour analysis;learning (artificial intelligence);lighting  
  Abstract Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the- art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available data sets. Finally, various freely available methods, of which some are considered to be state-of-the-art, are evaluated on two data sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ISE;CIC Approved no  
  Call Number Admin @ si @ GGW2011 Serial 1717  
Permanent link to this record
 

 
Author A. Toet; M. Henselmans; M.P. Lucassen; Theo Gevers edit  doi
openurl 
  Title Emotional effects of dynamic textures Type Journal
  Year 2011 Publication i-Perception Abbreviated Journal iPER  
  Volume 2 Issue (up) 9 Pages 969 – 991  
  Keywords  
  Abstract This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely unknown, despite their natural ubiquity and increasing use in digital media. Participants watched a set of dynamic textures, representing either water or various different media, and self-reported their emotional experience. Motion complexity was found to have mildly relaxing and nondominant effects. In contrast, motion change complexity was found to be arousing and dominant. The speed of dynamics had arousing, dominant, and unpleasant effects. The amplitude of dynamics was also regarded as unpleasant. The regularity of the dynamics over the textures’ area was found to be uninteresting, nondominant, mildly relaxing, and mildly pleasant. The spatial scale of the dynamics had an unpleasant, arousing, and dominant effect, which was larger for textures with diverse content than for water textures. For water textures, the effects of spatial contrast were arousing, dominant, interesting, and mildly unpleasant. None of these effects were observed for textures of diverse content. The current findings are relevant for the design and synthesis of affective multimedia content and for affective scene indexing and retrieval.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6695 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @THL2011 Serial 1843  
Permanent link to this record
 

 
Author K.E.A. van de Sande; Theo Gevers; C.G.M. Snoek edit  doi
openurl 
  Title Evaluating Color Descriptors for Object and Scene Recognition Type Journal Article
  Year 2010 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 32 Issue (up) 9 Pages 1582 - 1596  
  Keywords  
  Abstract Impact factor: 5.308
Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and discriminative power, color descriptors have been proposed. Because many different descriptors exist, a structured overview is required of color invariant descriptors in the context of image category recognition. Therefore, this paper studies the invariance properties and the distinctiveness of color descriptors (software to compute the color descriptors from this paper is available from http://www.colordescriptors.com) in a structured way. The analytical invariance properties of color descriptors are explored, using a taxonomy based on invariance properties with respect to photometric transformations, and tested experimentally using a data set with known illumination conditions. In addition, the distinctiveness of color descriptors is assessed experimentally using two benchmarks, one from the image domain and one from the video domain. From the theoretical and experimental results, it can be derived that invariance to light intensity changes and light color changes affects category recognition. The results further reveal that, for light intensity shifts, the usefulness of invariance is category-specific. Overall, when choosing a single descriptor and no prior knowledge about the data set and object and scene categories is available, the OpponentSIFT is recommended. Furthermore, a combined set of color descriptors outperforms intensity-based SIFT and improves category recognition by 8 percent on the PASCAL VOC 2007 and by 7 percent on the Mediamill Challenge.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ SGS2010 Serial 1846  
Permanent link to this record
 

 
Author R. Valenti; Theo Gevers edit  doi
openurl 
  Title Accurate Eye Center Location through Invariant Isocentric Patterns Type Journal Article
  Year 2012 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 34 Issue (up) 9 Pages 1785-1798  
  Keywords  
  Abstract Impact factor 2010: 5.308
Impact factor 2011/12?: 5.96
Locating the center of the eyes allows for valuable information to be captured and used in a wide range of applications. Accurate eye center location can be determined using commercial eye-gaze trackers, but additional constraints and expensive hardware make these existing solutions unattractive and impossible to use on standard (i.e., visible wavelength), low-resolution images of eyes. Systems based solely on appearance are proposed in the literature, but their accuracy does not allow us to accurately locate and distinguish eye centers movements in these low-resolution settings. Our aim is to bridge this gap by locating the center of the eye within the area of the pupil on low-resolution images taken from a webcam or a similar device. The proposed method makes use of isophote properties to gain invariance to linear lighting changes (contrast and brightness), to achieve in-plane rotational invariance, and to keep low-computational costs. To further gain scale invariance, the approach is applied to a scale space pyramid. In this paper, we extensively test our approach for its robustness to changes in illumination, head pose, scale, occlusion, and eye rotation. We demonstrate that our system can achieve a significant improvement in accuracy over state-of-the-art techniques for eye center location in standard low-resolution imagery.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ VaG 2012a Serial 1849  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: