toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title Rank Estimation in Missing Data Matrix Problems Type Journal Article
  Year 2011 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 39 Issue 2 Pages 140-160  
  Keywords  
  Abstract A novel technique for missing data matrix rank estimation is presented. It is focused on matrices of trajectories, where every element of the matrix corresponds to an image coordinate from a feature point of a rigid moving object at a given frame; missing data are represented as empty entries. The objective of the proposed approach is to estimate the rank of a missing data matrix in order to fill in empty entries with some matrix completion method, without using or assuming neither the number of objects contained in the scene nor the kind of their motion. The key point of the proposed technique consists in studying the frequency behaviour of the individual trajectories, which are seen as 1D signals. The main assumption is that due to the rigidity of the moving objects, the frequency content of the trajectories will be similar after filling in their missing entries. The proposed rank estimation approach can be used in different computer vision problems, where the rank of a missing data matrix needs to be estimated. Experimental results with synthetic and real data are provided in order to empirically show the good performance of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0924-9907 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ JSL2011; Serial 1710  
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title A Novel Space Variant Image Representation Type Journal Article
  Year 2013 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 47 Issue 1-2 Pages 48-59  
  Keywords Space-variant representation; Log-polar mapping; Onboard vision applications  
  Abstract Traditionally, in machine vision images are represented using cartesian coordinates with uniform sampling along the axes. On the contrary, biological vision systems represent images using polar coordinates with non-uniform sampling. For various advantages provided by space-variant representations many researchers are interested in space-variant computer vision. In this direction the current work proposes a novel and simple space variant representation of images. The proposed representation is compared with the classical log-polar mapping. The log-polar representation is motivated by biological vision having the characteristic of higher resolution at the fovea and reduced resolution at the periphery. On the contrary to the log-polar, the proposed new representation has higher resolution at the periphery and lower resolution at the fovea. Our proposal is proved to be a better representation in navigational scenarios such as driver assistance systems and robotics. The experimental results involve analysis of optical flow fields computed on both proposed and log-polar representations. Additionally, an egomotion estimation application is also shown as an illustrative example. The experimental analysis comprises results from synthetic as well as real sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0924-9907 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 605.203; 601.215 Approved no  
  Call Number Admin @ si @ OnS2013a Serial 2243  
Permanent link to this record
 

 
Author Arnau Ramisa; Alex Goldhoorn; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras edit  doi
openurl 
  Title Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas Type Journal Article
  Year 2011 Publication Journal of Intelligent and Robotic Systems Abbreviated Journal JIRC  
  Volume 64 Issue 3-4 Pages 625-649  
  Keywords  
  Abstract Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0921-0296 ISBN Medium  
  Area Expedition Conference  
  Notes RV;ADAS Approved no  
  Call Number Admin @ si @ RGA2011 Serial 1728  
Permanent link to this record
 

 
Author Arnau Ramisa; David Aldavert; Shrihari Vasudevan; Ricardo Toledo; Ramon Lopez de Mantaras edit  doi
openurl 
  Title Evaluation of Three Vision Based Object Perception Methods for a Mobile Robot Type Journal Article
  Year 2012 Publication Journal of Intelligent and Robotic Systems Abbreviated Journal JIRC  
  Volume 68 Issue 2 Pages 185-208  
  Keywords  
  Abstract This paper addresses visual object perception applied to mobile robotics. Being able to perceive household objects in unstructured environments is a key capability in order to make robots suitable to perform complex tasks in home environments. However, finding a solution for this task is daunting: it requires the ability to handle the variability in image formation in a moving camera with tight time constraints. The paper brings to attention some of the issues with applying three state of the art object recognition and detection methods in a mobile robotics scenario, and proposes methods to deal with windowing/segmentation. Thus, this work aims at evaluating the state-of-the-art in object perception in an attempt to develop a lightweight solution for mobile robotics use/research in typical indoor settings.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0921-0296 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RAV2012 Serial 2150  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit   pdf
doi  openurl
  Title Learning photometric invariance for object detection Type Journal Article
  Year 2010 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 90 Issue 1 Pages 45-61  
  Keywords road detection  
  Abstract Impact factor: 3.508 (the last available from JCR2009SCI). Position 4/103 in the category Computer Science, Artificial Intelligence. Quartile
Color is a powerful visual cue in many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions that negatively affect the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, this approach may be too restricted to model real-world scenes in which different reflectance mechanisms can hold simultaneously.
Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is computed composed of both color variants and invariants. Then, the proposed method combines these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, our fusion method uses a multi-view approach to minimize the estimation error. In this way, the proposed method is robust to data uncertainty and produces properly diversified color invariant ensembles. Further, the proposed method is extended to deal with temporal data by predicting the evolution of observations over time.
Experiments are conducted on three different image datasets to validate the proposed method. Both the theoretical and experimental results show that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning, and outperforms state-of-the-art detection techniques in the field of object, skin and road recognition. Considering sequential data, the proposed method (extended to deal with future observations) outperforms the other methods
 
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ AGL2010c Serial 1451  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: