toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Margarita Torre; Beatriz Remeseiro; Petia Radeva; Fernando Martinez edit  url
doi  openurl
  Title DeepNEM: Deep Network Energy-Minimization for Agricultural Field Segmentation Type Journal Article
  Year 2020 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal JSTAEOR  
  Volume 13 Issue Pages (down) 726-737  
  Keywords  
  Abstract One of the main characteristics of agricultural fields is that the appearance of different crops and their growth status, in an aerial image, is varied, and has a wide range of radiometric values and high level of variability. The extraction of these fields and their monitoring are activities that require a high level of human intervention. In this article, we propose a novel automatic algorithm, named deep network energy-minimization (DeepNEM), to extract agricultural fields in aerial images. The model-guided process selects the most relevant image clues extracted by a deep network, completes them and finally generates regions that represent the agricultural fields under a minimization scheme. DeepNEM has been tested over a broad range of fields in terms of size, shape, and content. Different measures were used to compare the DeepNEM with other methods, and to prove that it represents an improved approach to achieve a high-quality segmentation of agricultural fields. Furthermore, this article also presents a new public dataset composed of 1200 images with their parcels boundaries annotations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ TRR2020 Serial 3410  
Permanent link to this record
 

 
Author Oriol Pujol; Sergio Escalera; Petia Radeva edit  openurl
  Title An Incremental Node Embedding Technique for Error Correcting Output Codes Type Journal
  Year 2008 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 41 Issue 2 Pages (down) 713–725  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ PER2008 Serial 942  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Sergio Escalera; Xavier Baro; Petia Radeva; Jordi Vitria; Oriol Pujol edit  doi
openurl 
  Title Minimal Design of Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 33 Issue 6 Pages (down) 693-702  
  Keywords Multi-class classification; Error-correcting output codes; Ensemble of classifiers  
  Abstract IF JCR CCIA 1.303 2009 54/103
The classification of large number of object categories is a challenging trend in the pattern recognition field. In literature, this is often addressed using an ensemble of classifiers. In this scope, the Error-correcting output codes framework has demonstrated to be a powerful tool for combining classifiers. However, most state-of-the-art ECOC approaches use a linear or exponential number of classifiers, making the discrimination of a large number of classes unfeasible. In this paper, we explore and propose a minimal design of ECOC in terms of the number of classifiers. Evolutionary computation is used for tuning the parameters of the classifiers and looking for the best minimal ECOC code configuration. The results over several public UCI datasets and different multi-class computer vision problems show that the proposed methodology obtains comparable (even better) results than state-of-the-art ECOC methodologies with far less number of dichotomizers.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ BEB2011a Serial 1800  
Permanent link to this record
 

 
Author Oriol Pujol; Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Fundamentals of Stop and Go active models Type Journal Article
  Year 2005 Publication Image and Vision Computing Abbreviated Journal  
  Volume 23 Issue 8 Pages (down) 681-691  
  Keywords Deformable models; Geodesic snakes; Region-based segmentation  
  Abstract An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Butterworth-Heinemann Place of Publication Newton, MA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ PGR2005 Serial 1629  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  url
openurl 
  Title Error-Correcting Output Codes Library Type Journal Article
  Year 2010 Publication Journal of Machine Learning Research Abbreviated Journal JMLR  
  Volume 11 Issue Pages (down) 661-664  
  Keywords  
  Abstract (Feb):661−664
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The ECOC framework is a powerful tool to deal with multi-class categorization problems. This library contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean, inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-weighted) with the parameters defined by the authors, as well as the option to include your own coding, decoding, and base classifier.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1532-4435 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010c Serial 1286  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: