toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alex Gomez-Villa; Adrian Martin; Javier Vazquez; Marcelo Bertalmio; Jesus Malo edit  url
doi  openurl
  Title On the synthesis of visual illusions using deep generative models Type Journal Article
  Year 2022 Publication Journal of Vision Abbreviated Journal JOV  
  Volume 22(8) Issue 2 Pages (up) 1-18  
  Keywords  
  Abstract Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.161; 611.007 Approved no  
  Call Number Admin @ si @ GMV2022 Serial 3682  
Permanent link to this record
 

 
Author Pedro Martins; Paulo Carvalho; Carlo Gatta edit   pdf
doi  openurl
  Title On the completeness of feature-driven maximally stable extremal regions Type Journal Article
  Year 2016 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 74 Issue Pages (up) 9-16  
  Keywords Local features; Completeness; Maximally Stable Extremal Regions  
  Abstract By definition, local image features provide a compact representation of the image in which most of the image information is preserved. This capability offered by local features has been overlooked, despite being relevant in many application scenarios. In this paper, we analyze and discuss the performance of feature-driven Maximally Stable Extremal Regions (MSER) in terms of the coverage of informative image parts (completeness). This type of features results from an MSER extraction on saliency maps in which features related to objects boundaries or even symmetry axes are highlighted. These maps are intended to be suitable domains for MSER detection, allowing this detector to provide a better coverage of informative image parts. Our experimental results, which were based on a large-scale evaluation, show that feature-driven MSER have relatively high completeness values and provide more complete sets than a traditional MSER detection even when sets of similar cardinality are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP;MILAB; Approved no  
  Call Number Admin @ si @ MCG2016 Serial 2748  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen edit  doi
openurl 
  Title Compact color texture description for texture classification Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 51 Issue Pages (up) 16-22  
  Keywords  
  Abstract Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ KRW2015a Serial 2587  
Permanent link to this record
 

 
Author Maria Elena Meza de Luna; Juan Ramon Terven Salinas; Bogdan Raducanu; Joaquin Salas edit   pdf
url  openurl
  Title A Social-Aware Assistant to support individuals with visual impairments during social interaction: A systematic requirements analysis Type Journal Article
  Year 2019 Publication International Journal of Human-Computer Studies Abbreviated Journal IJHC  
  Volume 122 Issue Pages (up) 50-60  
  Keywords  
  Abstract Visual impairment affects the normal course of activities in everyday life including mobility, education, employment, and social interaction. Most of the existing technical solutions devoted to empowering the visually impaired people are in the areas of navigation (obstacle avoidance), access to printed information and object recognition. Less effort has been dedicated so far in developing solutions to support social interactions. In this paper, we introduce a Social-Aware Assistant (SAA) that provides visually impaired people with cues to enhance their face-to-face conversations. The system consists of a perceptive component (represented by smartglasses with an embedded video camera) and a feedback component (represented by a haptic belt). When the vision system detects a head nodding, the belt vibrates, thus suggesting the user to replicate (mirror) the gesture. In our experiments, sighted persons interacted with blind people wearing the SAA. We instructed the former to mirror the noddings according to the vibratory signal, while the latter interacted naturally. After the face-to-face conversation, the participants had an interview to express their experience regarding the use of this new technological assistant. With the data collected during the experiment, we have assessed quantitatively and qualitatively the device usefulness and user satisfaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ MTR2019 Serial 3142  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Andrew Bagdanov; Michael Felsberg; Jorma edit   pdf
url  openurl
  Title Scale coding bag of deep features for human attribute and action recognition Type Journal Article
  Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 29 Issue 1 Pages (up) 55-71  
  Keywords Action recognition; Attribute recognition; Bag of deep features  
  Abstract Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a bag of deep features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state of the art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079; 600.106; 600.120 Approved no  
  Call Number Admin @ si @ KWR2018 Serial 3107  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: