|
Oriol Rodriguez-Leor, J. Mauri, Eduard Fernandez-Nofrerias, M. Gomez, Antonio Tovar, L. Cano, et al. (2002). Ecografia Intracoronaria: Segmentacio Automatica de area de la llum. Revista Societat Catalana de Cardiologia, 42.
|
|
|
Ester Fornells, Manuel De Armas, Maria Teresa Anguera, Sergio Escalera, Marcos Antonio Catalán, & Josep Moya. (2018). Desarrollo del proyecto del Consell Comarcal del Baix Llobregat “Buen Trato a las personas mayores y aquellas en situación de fragilidad con sufrimiento emocional: Hacia un envejecimiento saludable”. Informaciones Psiquiatricas, 47–59.
|
|
|
Karim Lekadir, Alfiia Galimzianova, Angels Betriu, Maria del Mar Vila, Laura Igual, Daniel L. Rubin, et al. (2017). A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound. J-BHI - IEEE Journal Biomedical and Health Informatics, 21(1), 48–55.
Abstract: Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound.
|
|
|
Antonio Hernandez, Sergio Escalera, & Stan Sclaroff. (2016). Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures. IJCV - International Journal of Computer Vision, 118(1), 49–64.
Abstract: In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly.
Keywords: Contextual rescoring; Poselets; Human pose estimation
|
|
|
Meysam Madadi, Sergio Escalera, Xavier Baro, & Jordi Gonzalez. (2022). End-to-end Global to Local CNN Learning for Hand Pose Recovery in Depth data. IETCV - IET Computer Vision, 16(1), 50–66.
Abstract: Despite recent advances in 3D pose estimation of human hands, especially thanks to the advent of CNNs and depth cameras, this task is still far from being solved. This is mainly due to the highly non-linear dynamics of fingers, which make hand model training a challenging task. In this paper, we exploit a novel hierarchical tree-like structured CNN, in which branches are trained to become specialized in predefined subsets of hand joints, called local poses. We further fuse local pose features, extracted from hierarchical CNN branches, to learn higher order dependencies among joints in the final pose by end-to-end training. Lastly, the loss function used is also defined to incorporate appearance and physical constraints about doable hand motion and deformation. Finally, we introduce a non-rigid data augmentation approach to increase the amount of training depth data. Experimental results suggest that feeding a tree-shaped CNN, specialized in local poses, into a fusion network for modeling joints correlations and dependencies, helps to increase the precision of final estimations, outperforming state-of-the-art results on NYU and SyntheticHand datasets.
Keywords: Computer vision; data acquisition; human computer interaction; learning (artificial intelligence); pose estimation
|
|