|
David Berga, Xavier Otazu, Xose R. Fernandez-Vidal, Victor Leboran, & Xose M. Pardo. (2019). Generating Synthetic Images for Visual Attention Modeling. PER - Perception, 48, 99.
|
|
|
Olivier Penacchio, C. Alejandro Parraga, & Maria Vanrell. (2010). Natural Scene Statistics account for Human Cones Ratios. PER - Perception. ECVP Abstract Supplement, 39, 101.
Abstract: In two previous experiments [Parraga et al, 2009 J. of Im. Sci. and Tech 53(3) 031106; Benavente et al,2009 Perception 38 ECVP Supplement, 36] the boundaries of basic colour categories were measured.
In the first experiment, samples were presented in isolation (ie on a dark background) and boundaries were measured using a yes/no paradigm. In the second, subjects adjusted the chromaticity of a sample presented on a random Mondrian background to find the boundary between pairs of adjacent colours.
Results from these experiments showed significant dierences but it was not possible to conclude whether this discrepancy was due to the absence/presence of a colourful background or to the dierences in the paradigms used. In this work, we settle this question by repeating the first experiment (ie samples presented on a dark background) using the second paradigm. A comparison of results shows that
although boundary locations are very similar, boundaries measured in context are significantly dierent(more diuse) than those measured in isolation (confirmed by a Student’s t-test analysis on the subject’s answers statistical distributions). In addition, we completed the mapping of colour name space by measuring the boundaries between chromatic colours and the achromatic centre. With these results we completed our parametric fuzzy-sets model of colour naming space.
|
|
|
Rada Deeb, Joost Van de Weijer, Damien Muselet, Mathieu Hebert, & Alain Tremeau. (2019). Deep spectral reflectance and illuminant estimation from self-interreflections. JOSA A - Journal of the Optical Society of America A, 31(1), 105–114.
Abstract: In this work, we propose a convolutional neural network based approach to estimate the spectral reflectance of a surface and spectral power distribution of light from a single RGB image of a V-shaped surface. Interreflections happening in a concave surface lead to gradients of RGB values over its area. These gradients carry a lot of information concerning the physical properties of the surface and the illuminant. Our network is trained with only simulated data constructed using a physics-based interreflection model. Coupling interreflection effects with deep learning helps to retrieve the spectral reflectance under an unknown light and to estimate spectral power distribution of this light as well. In addition, it is more robust to the presence of image noise than classical approaches. Our results show that the proposed approach outperforms state-of-the-art learning-based approaches on simulated data. In addition, it gives better results on real data compared to other interreflection-based approaches.
|
|
|
Kai Wang, Joost Van de Weijer, & Luis Herranz. (2021). ACAE-REMIND for online continual learning with compressed feature replay. PRL - Pattern Recognition Letters, 150, 122–129.
Abstract: Online continual learning aims to learn from a non-IID stream of data from a number of different tasks, where the learner is only allowed to consider data once. Methods are typically allowed to use a limited buffer to store some of the images in the stream. Recently, it was found that feature replay, where an intermediate layer representation of the image is stored (or generated) leads to superior results than image replay, while requiring less memory. Quantized exemplars can further reduce the memory usage. However, a drawback of these methods is that they use a fixed (or very intransigent) backbone network. This significantly limits the learning of representations that can discriminate between all tasks. To address this problem, we propose an auxiliary classifier auto-encoder (ACAE) module for feature replay at intermediate layers with high compression rates. The reduced memory footprint per image allows us to save more exemplars for replay. In our experiments, we conduct task-agnostic evaluation under online continual learning setting and get state-of-the-art performance on ImageNet-Subset, CIFAR100 and CIFAR10 dataset.
Keywords: online continual learning; autoencoders; vector quantization
|
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2010). Generalized Gamut Mapping using Image Derivative Structures for Color Constancy. IJCV - International Journal of Computer Vision, 86(2-3), 127–139.
Abstract: The gamut mapping algorithm is one of the most promising methods to achieve computational color constancy. However, so far, gamut mapping algorithms are restricted to the use of pixel values to estimate the illuminant. Therefore, in this paper, gamut mapping is extended to incorporate the statistical nature of images. It is analytically shown that the proposed gamut mapping framework is able to include any linear filter output. The main focus is on the local n-jet describing the derivative structure of an image. It is shown that derivatives have the advantage over pixel values to be invariant to disturbing effects (i.e. deviations of the diagonal model) such as saturated colors and diffuse light. Further, as the n-jet based gamut mapping has the ability to use more information than pixel values alone, the combination of these algorithms are more stable than the regular gamut mapping algorithm. Different methods of combining are proposed. Based on theoretical and experimental results conducted on large scale data sets of hyperspectral, laboratory and realworld scenes, it can be derived that (1) in case of deviations of the diagonal model, the derivative-based approach outperforms the pixel-based gamut mapping, (2) state-of-the-art algorithms are outperformed by the n-jet based gamut mapping, (3) the combination of the different n-jet based gamut
|
|