|
F.Negin, Pau Rodriguez, M.Koperski, A.Kerboua, Jordi Gonzalez, J.Bourgeois, et al. (2018). PRAXIS: Towards automatic cognitive assessment using gesture recognition. ESWA - Expert Systems with Applications, 106, 21–35.
Abstract: Praxis test is a gesture-based diagnostic test which has been accepted as diagnostically indicative of cortical pathologies such as Alzheimer’s disease. Despite being simple, this test is oftentimes skipped by the clinicians. In this paper, we propose a novel framework to investigate the potential of static and dynamic upper-body gestures based on the Praxis test and their potential in a medical framework to automatize the test procedures for computer-assisted cognitive assessment of older adults.
In order to carry out gesture recognition as well as correctness assessment of the performances we have recollected a novel challenging RGB-D gesture video dataset recorded by Kinect v2, which contains 29 specific gestures suggested by clinicians and recorded from both experts and patients performing the gesture set. Moreover, we propose a framework to learn the dynamics of upper-body gestures, considering the videos as sequences of short-term clips of gestures. Our approach first uses body part detection to extract image patches surrounding the hands and then, by means of a fine-tuned convolutional neural network (CNN) model, it learns deep hand features which are then linked to a long short-term memory to capture the temporal dependencies between video frames.
We report the results of four developed methods using different modalities. The experiments show effectiveness of our deep learning based approach in gesture recognition and performance assessment tasks. Satisfaction of clinicians from the assessment reports indicates the impact of framework corresponding to the diagnosis.
|
|
|
Mikhail Mozerov, Fei Yang, & Joost Van de Weijer. (2019). Sparse Data Interpolation Using the Geodesic Distance Affinity Space. SPL - IEEE Signal Processing Letters, 26(6), 943–947.
Abstract: In this letter, we adapt the geodesic distance-based recursive filter to the sparse data interpolation problem. The proposed technique is general and can be easily applied to any kind of sparse data. We demonstrate its superiority over other interpolation techniques in three experiments for qualitative and quantitative evaluation. In addition, we compare our method with the popular interpolation algorithm presented in the paper on EpicFlow optical flow, which is intuitively motivated by a similar geodesic distance principle. The comparison shows that our algorithm is more accurate and considerably faster than the EpicFlow interpolation technique.
|
|
|
Mikhail Mozerov, & Joost Van de Weijer. (2017). Improved Recursive Geodesic Distance Computation for Edge Preserving Filter. TIP - IEEE Transactions on Image Processing, 26(8), 3696–3706.
Abstract: All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
Keywords: Geodesic distance filter; color image filtering; image enhancement
|
|
|
Mikhail Mozerov. (2013). Constrained Optical Flow Estimation as a Matching Problem. TIP - IEEE Transactions on Image Processing, 22(5), 2044–2055.
Abstract: In general, discretization in the motion vector domain yields an intractable number of labels. In this paper we propose an approach that can reduce general optical flow to the constrained matching problem by pre-estimating a 2D disparity labeling map of the desired discrete motion vector function. One of the goals of the proposed paper is estimating coarse distribution of motion vectors and then utilizing this distribution as global constraints for discrete optical flow estimation. This pre-estimation is done with a simple frame-to-frame correlation technique also known as the digital symmetric-phase-only-filter (SPOF). We discover a strong correlation between the output of the SPOF and the motion vector distribution of the related optical flow. The two step matching paradigm for optical flow estimation is applied: pixel accuracy (integer flow), and subpixel accuracy estimation. The matching problem is solved by global optimization. Experiments on the Middlebury optical flow datasets confirm our intuitive assumptions about strong correlation between motion vector distribution of optical flow and maximal peaks of SPOF outputs. The overall performance of the proposed method is promising and achieves state-of-the-art results on the Middlebury benchmark.
|
|
|
Mikhail Mozerov, & Joost Van de Weijer. (2019). One-view occlusion detection for stereo matching with a fully connected CRF model. TIP - IEEE Transactions on Image Processing, 28(6), 2936–2947.
Abstract: In this paper, we extend the standard belief propagation (BP) sequential technique proposed in the tree-reweighted sequential method [15] to the fully connected CRF models with the geodesic distance affinity. The proposed method has been applied to the stereo matching problem. Also a new approach to the BP marginal solution is proposed that we call one-view occlusion detection (OVOD). In contrast to the standard winner takes all (WTA) estimation, the proposed OVOD solution allows to find occluded regions in the disparity map and simultaneously improve the matching result. As a result we can perform only
one energy minimization process and avoid the cost calculation for the second view and the left-right check procedure. We show that the OVOD approach considerably improves results for cost augmentation and energy minimization techniques in comparison with the standard one-view affinity space implementation. We apply our method to the Middlebury data set and reach state-ofthe-art especially for median, average and mean squared error metrics.
Keywords: Stereo matching; energy minimization; fully connected MRF model; geodesic distance filter
|
|